Skip to main content
Log in

Modified Formulations of Particle Deposition and Removal Kinetics in Saturated Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Important revisions on the particulate deposition and removal rate equations are offered for flow of particulate suspensions through saturated porous media by distinguishing between the factors effecting the mechanisms of various particle deposition and removal processes, and their rate coefficients and parameters. Formulation considers particle transport by convection and dispersion toward open and partially jammed pores, flux of particles above a critical minimum in suspension, unblocked particles available for removal at the pore surface, shear-force below critical for deposition of suspended particles, shear-force above critical for entrainment of unblocked surface particles, active ion concentration below critical for spontaneous particle release from pore surface, critical pore-throat-to-particle diameter ratio for pore-throat jamming, deformation and pore-sealing effects of elastic particles, internal filter cake formation by particle accumulation behind pore throats, normal-force above critical for dislocation of deposits from pore throats, and thermal-, concentration-, stress-, and mobility-shock phenomena. Inherent limitations of previous outstanding rate equations are alleviated by means of theoretical reasoning and/or experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Half-axis of ellipsoidal particle (m)

A :

Surface area of bulk porous media normal to flow direction (m\(^{2}\))

\(A_{0}\) :

Cross-sectional area of a single pore throat (m\(^{2}\))

\(A_{1}\), \(A_{2}\), and \(A_{3}\) :

Empirically determined fitting parameters

\(A_\mathrm{s}\) :

Specific pore-surface area of the hydraulic flow paths (m\(^{2}\))

\(A_\mathrm{t}\) :

Total cross-sectional area of pore throats available (m\(^{2}\))

\(A_\mathrm{pt}\) :

Areas of the plugged pore throats (m\(^{2}\))

\(A_\mathrm{nt}\) :

Areas of nonplugged pore throats (m\(^{2}\))

b :

Half-axis of ellipsoidal particle (m)

\(B_{1}, B_{2}\), and \(B_{3}\) :

Empirically determined fitting parameters

c :

Fractal coefficient

C :

Fractal coefficient

\(C_\mathrm{cr}\) :

Critical active ion concentration of the flowing solution, normality

\(C_\mathrm{s}\) :

Effective salinity of the cation of the flowing solution causing particle detachment, normality

\(C_{2}\) and \(C_{3}\) :

Empirical parameters

d :

Fractal dimension

D :

Fractal dimension

\(D_{\mathrm{b}}\) :

Bulk coefficient of particle dispersion (m\(^{2}\)/s)

\(D_\mathrm{p}\) :

Mean diameters of the particles (m)

\(D_\mathrm{t}\) :

Mean diameters of the pore throats (m)

\(D_\phi \) :

Mean pore size (m)

E :

Activation energy (J/kmol)

\(f_\mathrm{i}({x_\mathrm{i}})\) :

Functions of properly selected variables \(x_\mathrm{i}\)

\(f_\sigma \left( {J_\sigma -J_{\sigma _\mathrm{cr} } } \right) \) :

Function of \(\left( {J_\sigma -J_{\sigma _\mathrm{cr} } } \right) \)

\(f_\tau \left( {F_\mathrm{cr} -F} \right) \) :

Function of \(\left( {F_\mathrm{cr} -F} \right) \)

\(f_F \left( {F-F_\mathrm{cr} } \right) \) :

Function of \(\left( {F-F_\mathrm{cr} } \right) \)

\(f_C \left( {C_\mathrm{cr}-C_\mathrm{s}}\right) \) :

Function of \(\left( {C_\mathrm{cr}-C_\mathrm{s}}\right) \)

F :

Tangential-force or shear-force acting over the pore-surface deposits (N)

\(F_\mathrm{cr}\) :

Critical shear-force required for entrainment of the surface deposits (N)

G :

Ratio of the fluid viscous forces to the particles elastic forces, dimensionless

H :

Hamaker coefficient (J)

j :

Dispersive mass flux of the particles of the suspension of particles flowing through porous media (kg/m\(^{2}\)/s)

\(J_\sigma \) :

Volumetric flux of the migrating particles (m\(^{3}\)/m\(^{2}\)/s)

\(J_{\sigma _\mathrm{cr}}\) :

Critical minimum volumetric flux (m\(^{3}\)/m\(^{2}\)/s)

\(J_w\) :

Mass flux of the migrating particles of suspension flowing through porous media (kg/m\(^{2}\)/s)

k :

Rate coefficient

\(k_{0}\) :

Coefficient

\(k_1 ,k_{10} ,k_{11}\) :

Pore-surface particle deposition rate coefficients

\(k_2 , k_{20} ,k_{21}\) :

Pore-surface particle removal rate coefficients

\(k_3 , k_{30} ,k_{31}\) :

Pore-throat particle deposition rate coefficients

\(k_{4},k_{40} ,k_{41} ,k_{42} ,k_{43}\) :

Pore-throat unplugging rate coefficients

\(k'\) :

Empirically determined parameter

\(k_\mathrm{nt}\) :

Rate coefficient of open pore-throat particle deposition by jamming

\(k_\mathrm{pt}\) :

Rate coefficient of pore-space filling behind jammed or plugged pore throats

\(k_{\mathrm{vo}}\) :

Empirical parameter

\(k_\tau \) :

Empirical parameter

K :

Permeability of porous media (m\(^{2}\))

\(K_\mathrm{pt}\) :

Permeability of the pore-throat clogging deposits (m\(^{2}\))

l :

Distance between the particles (m)

L :

Porous core sample length (m)

m :

Mass of particles retained per unit bulk volume of porous media (kg/m\(^{3}\))

\(\dot{m}\) :

Net rate of particle loss by flowing suspension by deposition in porous media by various processes (kg/m\(^{3}\)/s)

\(m_{11}, m_{12,} m_{13, }m_{21} ,m_{22} ,m_{23} ,m_{24}\) :

Empirical exponents

\(m_{31}, m_{32,}m_{41}, m_{42}, m_{43}, m_{44}\) :

Empirical parameters

M :

Number of factors

\(M_\mathrm{cr}\) :

Critical mobility number

\(n'\) :

Empirically determined parameter

\(n_\mathrm{t}\) :

Total number of pore throats

\(n_{\mathrm{pt}}\) :

Number of plugged pore throats

\(n_\mathrm{nt}\) :

Number of nonplugged pore throats

N :

Number of variables

\(N_\mathrm{D}\) :

Ellipsoidal particle deformation number, dimensionless

p :

Fluid pressure (Pa)

q :

Volumetric flow rate of the flowing fluid through porous media (m\(^{3}\)/s)

\(q_\mathrm{nt}\) :

Volumetric flow rate of the flowing fluid through the unplugged pore throats (m\(^{3}\)/s)

\(q_\mathrm{pt}\) :

Volumetric flow rate of the flowing fluid through the plugged pore throats (m\(^{3}\)/s)

R :

Mass fraction of the particles of a suspension retained by a sieve after filtration

\(R_\mathrm{g}\) :

Universal gas constant [8.314 kJ/(kmol K)]

\({Re}_\mathrm{cr}\) :

Critical Reynolds number

\({Re}_\mathrm{p}\) :

Reynolds number for particles migrating in suspension of particles flowing through porous media, dimensionless

u :

Volumetric fluid flux (m\(^{3}\)/m\(^{2}\)/s)

v :

Interstitial fluid velocity through porous media (m/s)

\(v_\mathrm{p}\) :

Particle velocity (m/s)

x :

Distance in the Cartesian coordinate (m)

\(x_\mathrm{i}: i= 1,2,\ldots ,N\) :

Properly selected variables

t :

Time (s)

T :

Temperature (K)

v :

Interstitial fluid velocity through porous media (m/s)

\(v_\mathrm{cr}\) :

Critical interstitial fluid shear velocity (m/s)

w :

Mass fraction of particles in the flowing suspension (kg particles/kg suspension)

\(W_\phi \) :

Width of slits (m)

\(\alpha _\mathrm{b}\) :

Longitudinal dispersivity (m)

\(\beta \) :

Pore-throat-to-particle diameter ratio

\(\beta _\mathrm{cr}\) :

Critical pore-throat-to-particle diameter ratio causing pore-throat blocking

\(\beta _\infty \) :

Empirically determined fitting parameter

\(\rho \) :

Density of the flowing suspension of particles (kg/m\(^{3}\))

\(\rho _\mathrm{p}\) :

Particle material mass density (kg/m\(^{3}\))

\(\phi \) :

Instantaneous porosity

\(\phi _o\) :

Initial porosity of porous media

\(\varepsilon \) :

Volume occupied by the deposited particles per unit bulk volume

\(\varepsilon _{\max }\) :

Maximum capacity of the pore-throat particle deposition when all pore throats are plugged by particles

\(\varepsilon _o\) :

Average volume of a single pore-throat clogging deposit per unit bulk volume of porous media

\(\lambda \) :

Empirical decay constant

\(\gamma _\mathrm{s}\) :

Specific weight of particles (N/m\(^{3}\))

\(\dot{\gamma }\) :

Fluid shear rate (1/s)

\(\mu \) :

Fluid viscosity (Pa s)

\(\sigma \) :

Volume fraction of particles in the flowing suspension (m\(^{3}\)/m\(^{3}\))

\(\sigma _\mathrm{cr}\) :

Critical minimum volumetric concentration of particles in the flowing suspension (m\(^{3}\)/m\(^{3}\))

\(\sigma _\mathrm{in} \hbox { and }\sigma _\mathrm{out}\) :

Inlet and outlet fluid particle volume concentrations (m\(^{3}\)/m\(^{3}\))

\(\tau \) :

Shear-stress applied over the surface of deposited particles (Pa)

\(\tau _\mathrm{cr}\) :

Critical shear-stress (Pa)

\(\tau _\phi \) :

Tortuosity of porous media, dimensionless

\(\eta \) :

Fraction of unblocked deposited particles available over the pore surface

\(\eta _\mathrm{s}\) :

Particle shear modulus (Pa)

\(\omega \) :

Ellipsoidal particle aspect ratio

o:

Initial or coefficient

cr:

Critical value

i:

Index

t, pt, and nt:

All, plugged, and nonplugged pore throats

References

  • Al-Ibadi, A., Civan, F.: Experimental investigation and correlation of treatment in weak and high-permeability formations by gel particles, paper SPE-153557-PA. SPE Prod. Oper. 28(4), 387–401 (2013)

    Article  Google Scholar 

  • Altoe, J.E., Bedrikovetsky, F.P., Siqueira, A.G., Souza, A.L., Shecaira, F.S.: Correction of basic equations for deep bed filtration with dispersion. J. Pet. Sci. Eng. 51(1–2), 68–84 (2006)

    Article  Google Scholar 

  • Carman, P.C.: Fluid flow through a granular bed. Trans. Inst. Chem. Eng. Lond. 15, 150–167 (1937)

    Google Scholar 

  • Chang, Y.-I., Cheng, W.-Y., Chan, H.-C.: A proposed correlation equation for predicting filter coefficient under unfavorable deposition conditions. Sep. Purif. Technol. 65(3), 248–250 (2009)

    Article  Google Scholar 

  • Civan, F.: Predictability of Formation Damage: An Assessment Study and Generalized Models, Final Report, US DOE Contract No. DE-AC22-90-BC14658, April (1994a)

  • Civan, F.: Solving multivariable mathematical models by the quadrature and cubature methods. Numer. Methods Partial Differ. Equ. 10, 545–567 (1994b)

    Article  Google Scholar 

  • Civan, F.: Modeling and simulation of formation damage by organic deposition. In: Proceedings of the First International Symposium on Colloid Chemistry in Oil Production: Asphaltenes and Wax Deposition, ISCOP’95, pp. 102–107. Rio de Janeiro, Brazil (1995a)

  • Civan, F.: Practical implementation of the finite analytic method. Appl. Math. Model. 19(5), 298–306 (1995b)

    Article  Google Scholar 

  • Civan, F.: A multi-purpose formation damage model, paper SPE31101. In: Proceedings of the SPE Formation Damage Symposium, pp. 311–326. Lafayette, LA (1996)

  • Civan, F.: Reservoir Formation Damage-Fundamentals, Modeling, Assessment, and Mitigation, 1st edn. Gulf Pub Co., Houston, and Butterworth-Heinemann, Woburn (2000)

  • Civan, F.: Scale effect on porosity and permeability: kinetics, model, and correlation. AIChE J. 47(2), 271–287 (2001)

    Article  Google Scholar 

  • Civan, F.: Implications of alternative macroscopic descriptions illustrated by general balance and continuity equations. J. Porous Media 5(4), 271–282 (2002a)

    Article  Google Scholar 

  • Civan, F.: Relating permeability to pore connectivity using a power-law flow unit equation. Petrophys. J. 43(6), 457–476 (2002b)

    Google Scholar 

  • Civan, F.: Leaky-tube permeability model for identification, characterization, and calibration of reservoir flow units, paper SPE 84603. In: SPE Annual Technical Conference and Exhibition, Denver, Colorado, 5–8 October (2003)

  • Civan, F.: Temperature dependence of wettability related rock properties correlated by the Arrhenius equation. Petrophysics 45(4), 350–362 (2004)

    Google Scholar 

  • Civan, F.: Improved permeability equation from the bundle-of-leaky-capillary-tubes model, SPE paper 94271-PP. In: The Production Operations Symposium held in Oklahoma City, Oklahoma, 17–19 April (2005)

  • Civan, F.: Reservoir Formation Damage: Fundamentals, Modeling, Assessment, and Mitigation, 2nd edn. Gulf Professional Pub., Elsevier, Burlington (2007a)

    Google Scholar 

  • Civan, F.: Temperature effect on power for particle detachment from pore wall described by an Arrhenius-type equation. Transp Porous Media 67(2), 329–334 (2007b)

    Article  Google Scholar 

  • Civan, F.: Temperature effect on advection-diffusion transport involving fines migration and deposition in geological porous media, Article no. 452. In: 2008 IAHR International Groundwater Symposium, Istanbul, Turkey, June 18–20 (2008a)

  • Civan, F.: Use exponential functions to correlate temperature dependence. Chem. Eng. Prog. 104(7), 46–52 (2008b)

    Google Scholar 

  • Civan, F.: Correlation of permeability loss by thermally-induced compaction due to grain expansion. Petrophys. J. 49(4), 351–361 (2008c)

    Google Scholar 

  • Civan, F.: Practical finite-analytic method for solving differential equations by compact numerical schemes. Num. Methods Partial Differ. Equ. 25(2), 347–379 (2009)

    Article  Google Scholar 

  • Civan, F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. Transp Porous Media 85(1), 233–258 (2010a)

    Article  Google Scholar 

  • Civan, F.: Modeling transport in porous media by control volume analysis. J. Porous Media 13(10), 855–873 (2010b)

    Article  Google Scholar 

  • Civan, F.: Porous Media Transport Phenomena. Wiley, Hoboken. ISBN:978-0-470-64995-4 (2011)

  • Civan, F.: Improved permeability prediction for heterogeneous porous media by bundle-of-leaky-tubes with cross-flow model. In: Vafai, K. (ed.) Proceedings (CD) of the 5th International Conference on Porous Media and Its Applications in Science, Engineering and Industry (ICPMV), Kona, Hawaii, USA, June 22–27 (2014)

  • Civan, F.: Effective transport through porous media under nonequilibrium relaxation conditions, Chapter 10. In: Vafai, K. (ed.) The Handbook of Porous Media-Third Edition (HPM3-1), pp. 391–438. CRC Press, Taylor & Francis Group, LLC, Boca Raton (2015)

    Chapter  Google Scholar 

  • Civan, F., Engler, T.: Drilling mud filtrate invasion—improved model and solution. J. Pet. Sci. Eng. 11, 183–193 (1994)

    Article  Google Scholar 

  • Civan, F., Knapp, R.M., Ohen, H.A.: Alteration of permeability by fine particle processes. J. Pet. Sci. Eng. 3(1/2), 65–79 (1989)

    Article  Google Scholar 

  • Civan, F., Nguyen, V.: Modeling particle migration and deposition in porous media by parallel pathways with exchange, Chapter 11. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 457–484. CRC Press, Taylor&Francis Group, LLC, Boca Raton (2005)

    Chapter  Google Scholar 

  • Civan, F., Rai, C.S., Sondergeld, C.H.: Determining shale permeability to gas by simultaneous analysis of various pressure tests, paper 144253-PA. SPE J. 17(3), 717–726 (2012)

    Article  Google Scholar 

  • Civan, F., Rasmussen, M.L.: Analytical models for porous media impairment by particles in rectilinear and radial flows, Chapter 12. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 485–542. CRC Press, Taylor&Francis Group, LLC, Boca Raton (2005)

    Chapter  Google Scholar 

  • Dupuit, J.: Etudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables, 2nd edn. Dunod, Paris (1863)

    Google Scholar 

  • Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle Deposition and Aggregation: Measurement, Modeling and Simulation. Butterworth-Heinemann, Oxford (1995)

    Google Scholar 

  • Gao, T., Hu, H.H.: Deformation of elastic particles in viscous shear flow. J. Comput. Phys. 228(6), 2132–2151 (2009)

    Article  Google Scholar 

  • Gao, T., Hu, H.H., Castañeda, P.P.: Rheology of a suspension of elastic particles in a viscous shear flow. J. Fluid Mech. 687, 209–237 (2011)

    Article  Google Scholar 

  • Ghofrani, R., Alaboudi, M.A.M.: Damage caused by clay-based and clay-free inhibitive fluids in sandstone formations, paper SPE 23815. In: Proceedings of the SPE International Symposium on Formation Damage Control, pp. 439–446. Lafayette, LA, February 26–27 (1992)

  • Gruesbeck, C., Collins, R.E.: Entrainment and deposition of fine particles in porous media. SPEJ 22(6), 847–856 (1982a)

    Article  Google Scholar 

  • Gruesbeck, C., Collins, R.E.: Particles transport through perforations. SPEJ 22(6), 857–865 (1982b)

    Article  Google Scholar 

  • Iscan, A.G., Civan, F.: Correlation of criteria for perforation and pore plugging by particles. J. Porous Media 9(6), 541–558 (2006)

    Article  Google Scholar 

  • Iscan, A.G., Civan, F., Kok, M.V.: Alteration of permeability by drilling fluid invasion and flow reversal. J. Pet. Sci. Eng. 58(1–2), 227–244 (2007)

    Article  Google Scholar 

  • Iscan, A.G., Kok, M.V., Civan, F.: Investigation of porosity and permeability impairment in sandstones by X-ray analysis and simulation. Energy Sources Part A 31(5), 387–395 (2009)

    Article  Google Scholar 

  • Ives, K.J.: Filtration of clay suspensions through sand. Clay Miner. 22, 49–61 (1987)

    Article  Google Scholar 

  • Iwasaki, T.: Some notes on sand filtration. J. Am. Water Works Assoc. 29(10), 1591–1602 (1937)

    Google Scholar 

  • Jin, L., Wojtanowicz, A.K.: Development of injectivity damage due to oily waste water in linear flow, paper SPE-168130-MS. In: Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 26–28 February (2014)

  • Khilar, K.C., Fogler, H.S.: Migration of Fines in Porous Media. Theory and Applications of Transport in Porous Media, vol. 12. Kluwer, Norwell (2000)

    Google Scholar 

  • Kohse, B.F., Nghiem, L.X.: Modelling asphaltene precipitation and deposition in a compositional reservoir simulator, paper SPE-89437-MS. In: SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, 17–21 April (2004)

  • Kord, S., Mohammadzadeh, O., Miri, R., Soulgani, B.S.: Further investigation into the mechanisms of asphaltene deposition and permeability impairment in porous media using a modified analytical model. Fuel 117, 259–268 (2014)

    Article  Google Scholar 

  • Lohne, A.L., Han, L., van der Zwaag, C., van Velzen, H., Mathisen, A.-M., Twyman, A., Hendriks, W., Bulgachev, R.V., Hatzignatiou, D.G.: Formation-damage and well-productivity simulation, paper SPE-122241-PA. SPE J. 15(3), 751–769 (2010)

    Article  Google Scholar 

  • Maroudas, A., Elsenklam, P.: Classification of suspensions: a study of particle deposition in granular media: part I-some observations on particle deposition. Chem. Eng. Sci. 20(10), 867–873 (1965)

    Article  Google Scholar 

  • Metzner, A.B., Reed, J.C.: Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent flow regions. AIChE J. 1(4), 434–440 (1955)

    Article  Google Scholar 

  • Minssieux, L.: Core damage from crude asphaltene deposition, paper SPE 37250. In: SPE International Symposium on Oilfield Chemistry, Houston, Texas, February 18–21 (1997)

  • Ohen, H.A., Civan, F.: Simulation of formation damage in petroleum reservoirs. SPE Adv. Technol. Ser. 1(1), 27–35 (1993)

    Article  Google Scholar 

  • Pandya, V.B., Bhuniya, S., Khilar, K.C.: Existence of a critical particle concentration in plugging of a packed bed. AIChE J. 44(4), 978–981 (1998)

    Article  Google Scholar 

  • Potanin, A.A., Uriev, N.B.: Micro-rheological models of aggregated suspensions in shear flow. J. Colloid Interface Sci. 142(2), 385–395 (1991)

    Article  Google Scholar 

  • Prada, A., Civan, F.: Modification of Darcy’s law for the threshold pressure gradient. J. Pet. Sci. Eng. 22(4), 237–240 (1999)

    Article  Google Scholar 

  • Roussel, N., Nguyen, T.L.H., Coussot, P.: General probabilistic approach to the filtration process. Phys. Rev. Lett. 98(11), 114502–114502 (2007)

    Article  Google Scholar 

  • Sarac, S., Civan, F.: Mechanisms, parameters, and modeling of naphthenate soap-induced formation damage, paper SPE-112434-PP. SPE J. 14(2), 259–266 (2009)

    Article  Google Scholar 

  • Schembre, J.M., Kovscek, A.R.: Mechanism of formation damage at elevated temperature. J. Energy Resour. Technol. Trans. ASME 127(3), 171–180 (2005)

    Article  Google Scholar 

  • Soulgani, B.S., Tohidi, B., Jamialahmadi, M., Rashtchian, D.: Modeling formation damage due to asphaltene deposition in the porous media. Energy Fuels 25, 753–761 (2011)

    Article  Google Scholar 

  • Stone, H.A.: Dynamics of drop deformation and breakup in viscous flows. Annu. Rev. Fluid Mech. 26, 65–102 (1994)

    Article  Google Scholar 

  • Taylor, G.I.: The formation of emulsions in definable fields of flow. Proc. Roy. Soc. Lond. A 146, 501–523 (1934)

    Article  Google Scholar 

  • Tiraferri, A., Tosco, T., Sethi, R.: Transport and retention of microparticles in packed sand columns at low and intermediate ionic strengths: experiments and mathematical modeling. Environ. Earth Sci. 63, 847–859 (2011). doi:10.1007/s12665-010-0755-4

    Article  Google Scholar 

  • Tran, T.V., Civan, F., Robb, I.: Correlating flowing time and condition for perforation plugging by suspended particles, paper SPE120847-MS. SPE Drill. Complet. J. 24(3), 398–403 (2009)

    Article  Google Scholar 

  • Tremblay, B., Sedgwick, G., Forshner, K.: Modeling of sand production from wells on primary recovery. J. Can. Pet. Technol. 37(3), 41–50 (1998)

    Article  Google Scholar 

  • Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38(2), 529–536 (2004)

    Article  Google Scholar 

  • Wang, S., Civan, F.: Model-assisted analysis of simultaneous paraffin and asphaltene deposition in laboratory core tests. J. Energy Resour. Technol. 127(4), 318–322 (2005a)

    Article  Google Scholar 

  • Wang, S., Civan, F.: Modeling formation damage by asphaltene deposition during primary oil recovery. J. Energy Resour. Technol. 127(4), 310–317 (2005b)

    Article  Google Scholar 

  • Winsauer, W.O., Shearin, H.M., Masson, P.H., Williams, M.: Resistivity of brine saturated sands in relation to pore geometry. Bull. Am. Ass. Petrol. Geol. 36(2), 253–277 (1952)

    Google Scholar 

  • Wojtanowicz, A.K., Krilov, Z., Langlinais, J.P.: Experimental determination of formation damage pore blocking mechanisms. Trans. ASME J. Energy Resour. Technol. 110, 34–42 (1988)

    Article  Google Scholar 

  • Zamani, A., Maini, B.: Flow of dispersed particles through porous media—deep bed filtration. J. Pet. Sci. Eng. 69, 71–88 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Civan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civan, F. Modified Formulations of Particle Deposition and Removal Kinetics in Saturated Porous Media. Transp Porous Med 111, 381–410 (2016). https://doi.org/10.1007/s11242-015-0600-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0600-z

Keywords

Navigation