Skip to main content
Log in

Kinetics and Equilibrium Isotherms of Water Vapor Adsorption/Desorption in Cement-Based Porous Materials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The kinetics and equilibrium of water vapor adsorption/desorption isotherm (WVSI) are fundamental information for solid–moisture interaction in the microstructure of cement-based porous materials (CBPM). This paper presents firstly the experimental data for WVSI of CBPM with a ternary binder. Mass changes in specimen are recorded in sorption tests for materials with different aggregate contents and water-to-binder (w/b) ratios under controlled ambient relative humidity. Both the sorption equilibrium and sorption kinetics are investigated through some established physical models, and the corresponding intrinsic parameters of moisture sorption are determined. For sorption kinetics, the mass change during sorption is interpreted through Elovich model, power model and pseudo-first-order and pseudo-second-order models. The mass change in sorption occurs mainly in the first 40 days, and the pseudo-second-order model shows the best adaption to all adsorption/desorption processes. For sorption equilibrium, Guggenheim–Anderson–de Boer (GAB), modified Halsey and Oswin models are used to interpret the moisture sorption capacity. The hysteresis between adsorption and desorption processes is attributed, respectively, to the mechanisms of snap-through, energy instability and pore constrictivity for low, middle and high relative humidity ranges. From the analysis, it is found that (1) through the interpretation of pseudo-second-order model the moisture sorption kinetics can be controlled by the sorption between the water molecules and the pore wall in addition to vapor diffusion; (2) the sorption capacity is sensitive to aggregate content and w/b ratio; incorporating aggregates, decreasing w/b ratio and increasing humidity gradient tend to decrease the sorption capacity of CBPMs; (3) the sorption isotherm hysteresis is well described by GAB-H model, both the extent of hysteresis and the energy constant related to pore surface tension showing clear correlation with the aggregate content and w/b ratio of CBPMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adolphs, J.: Surface energy of hardened cement paste depending on relative humidity. Mater. Struct. 38, 443–448 (2005)

    Google Scholar 

  • Alford, N.M., Rahman, A.A.: An assessment of porosity and pore sizes in hardened cement pastes. J. Mater. Sci. 16, 3105–3114 (1981)

    Article  Google Scholar 

  • Aligizaki, K.K.: Pore structure of cement-based materials: testing, interpretation and requirement. Taylor and Francis, New York (2006)

    Google Scholar 

  • Allen, A.J., Thomas, J.J., Jennings, H.M.: Composition and density of nanoscale calcium—silicate—hydrate in cement. Nat. Mater. 6(4), 311–316 (2007)

    Article  Google Scholar 

  • Baroghel-Bouny, V.: Water vapour sorption experiments on hardened cementitious materials Part I: essential tool for analysis of hygral behaviour and its relation to pore structure. Cem. Concr. Res. 37, 414–437 (2007a)

    Article  Google Scholar 

  • Baroghel-Bouny, V.: Water vapour sorption experiments on hardened cementitious materials Part I: essential tool for assessment of transport properties and for durability prediction. Cem. Concr. Res. 37, 438–454 (2007b)

    Article  Google Scholar 

  • Bashiri, H.: Desorption kinetics at the solid/solution interface: a theoretical description by statistical rate theory for close-to-equilibrium systems. J. Phys. Chem. C. 115, 5732–5739 (2011)

    Article  Google Scholar 

  • Bazant, Z.P.: Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures. Nucl. Eng. Des. 20, 477–505 (1972a)

    Article  Google Scholar 

  • Bazant, Z.P.: Thermodynamics of hindered adsorption with application to cement paste and concrete. Cem. Concr. Res. 2, 1–16 (1972b)

    Article  Google Scholar 

  • Bazant, Z.P., Hauggaard, A.B., Baweja, S., Ulm, F.-J.: Microprestress-solidification theory for concrete creep. I: aging and drying effects. J. Eng. Mech. 123, 1188–1194 (1997)

    Article  Google Scholar 

  • Bazant, M.Z., Bazant, Z.P.: Theory of sorption hysteresis in nanoporous solids: Part I snap-through instabilities. J. Mech. Phys. Solids 60, 1644–1659 (2012a)

    Article  Google Scholar 

  • Bazant, M.Z., Bazant, Z.P.: Theory of sorption hysteresis in nanoporous solids: Part II molecular condensation. J. Mech. Phys. Solids 60, 1660–1675 (2012b)

    Article  Google Scholar 

  • Benzarti, K., Perruchot, C., Chehimi, M.M.: Surface energetics of cementitious materials and their wettability by an epoxy adhesive. Coll. Surf. A 286, 78–91 (2006)

    Article  Google Scholar 

  • Bizot, H.: Using the GAB model to construct sorption isotherms. In: Jowitt, R., et al. (eds.) Physical Properties of Foods (European Project Group COST 90 on physical properties of foods). Applied Science Publishers, London (1983)

    Google Scholar 

  • Bratasz, L., Kozlowska, A., Kozlowski, R.: Analysis of water adsorption by wood using the Guggenheim–Anderson–de Boer equation. Eur. J. Wood Prod. 70, 445–451 (2012)

    Article  Google Scholar 

  • Brennan, J.K., Thomson, K.T., Gubbins, K.E.: Adsorption of water in activated carbons: effects of pore blocking and connectivity. Langmuir 18, 5438–5447 (2002)

    Article  Google Scholar 

  • Brue, F., Davy, C.A., Skoczylas, F., Burlion, N., Bourbon, X.: Effect of temperature on the water retention properties of two high performance concretes. Cem. Concr. Res. 42, 384–396 (2012)

    Article  Google Scholar 

  • Carlier, JPh, Rougelot, Th, Burlion, N.: Performance evaluation of models describing sorption isotherm in cementitious materials between saturation and oven dryness. Constr. Build. Mater. 37, 58–66 (2012)

    Article  Google Scholar 

  • Derluyn, H., Derome, D., Carmeliet, J., Stora, E., Barbarulo, R.: Hysteretic moisture behavior of concrete: modeling and analysis. Cem. Concr. Res. 42(10), 1379–1388 (2012)

    Article  Google Scholar 

  • Dutcher, C.S., Ge, X., Wexler, A.S., Clegg, S.L.: Statistical mechanics of multilayer sorption: extension of the Brunauer–Emmett–Teller (BET) and Guggenheim–Anderson–de Boer (GAB) adsorption isotherms. J. Phys. Chem. C 115(33), 16474–16487 (2011)

    Article  Google Scholar 

  • Espinosa, R.M., Franke, L.: Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste. Cem. Concr. Res. 36, 1969–1984 (2006)

    Article  Google Scholar 

  • Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y.H., Indraswati, N., Ismadji, S.: Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J. Hazard. Mater. 162, 616–645 (2009)

    Article  Google Scholar 

  • Furmaniak, S., Gauden, P.A., Terzyk, A.P., Rychlicki, G.: Water adsorption on carbons: critical review of the most popular analytical approaches. Adv. Colloid Interface 137, 82–143 (2008)

    Article  Google Scholar 

  • Garbalinska, H., Kowalski, S.J., Staszak, M.: Moisture transfer between unsaturated cement mortar and ambient air. Transp. Porous Med. 85(1), 79–96 (2010)

    Article  Google Scholar 

  • Garbalinska, H., Kowalski, S.J., Staszak, M.: Moisture diffusivity in mortars of different water-cement ratios and in narrow ranges of air humidity changes. Int. J. Heat Mass Transf. 56, 212–222 (2013)

    Article  Google Scholar 

  • Hagymassy, J.J.R., Brunauer, S., Mikhail, R.S.: Pore structure analysis by water vapour adsorption: t-curves for water vapour. J. Colloid Interface Sci. 29(3), 485–491 (1969)

    Article  Google Scholar 

  • Halsey, G.: Physical adsorption on non-uniform surfaces. J. Chem. Phys. 16, 931–937 (1948)

    Article  Google Scholar 

  • Ho, Y.S.: Review of second-order models for adsorption systems. J. Hazard. Mater. B136, 681–689 (2006)

    Article  Google Scholar 

  • Horikawa, T., Do, D.D., Nicholson, D.: Capillary condensation of adsorbates in porous materials. Adv. Colloid Interface 169, 40–58 (2011)

    Article  Google Scholar 

  • Horikawa, T., Sakao, N., Do, D.D.: Effects of temperature on water adsorption on controlled microporous and mesoporous carbonaceous solids. Carbon 56, 183–192 (2013)

    Article  Google Scholar 

  • Janczuk, B., Biakopiotrowicz, T.: Components of surface free energy of some clay minerals. Clays Clay Miner. 36, 243–248 (1988)

    Article  Google Scholar 

  • Jennings, H.M.: Refinements to colloid model of C–S–H in cement: CM-II. Cem. Concr. Res. 38, 275–289 (2008)

    Article  Google Scholar 

  • Jiang, J., Yuan, Y.: Relationship of moisture content with temperature and relative humidity in concrete. Mag. Concr. Res. 65(11), 685–692 (2013)

    Article  Google Scholar 

  • Lesti, M., Tiemeyer, C., Plank, J.: \(\text{ CO }_{2}\) stability of Portland cement based well cementing systems for use on carbon capture and storage (CCS) wells. Cem. Concr. Res. 45, 45–54 (2013)

    Article  Google Scholar 

  • Li, H., Ai, M., Liu, B., Zheng, S., Zong, G.: Water vapor sorption on surfactant-templated porous silica xerogels. Microporous Mesoporous Mater. 143(1), 1–5 (2011)

    Article  Google Scholar 

  • Li, H.G., Huang, G.H., An, C.J., Zhang, W.X.: Kinetic and equilibrium studies on the adsorption of calcium lignosulfonate from aqueous solution by coal fly ash. Chem. Eng. J. 200–202, 275–282 (2012)

    Article  Google Scholar 

  • López-Aranguren, P., Saurina, J., Vega, L.F., Domingo, C.: Sorption of tryalkoxysilane in low-cost porous silicates using a supercritical \(\text{ CO }_{2}\) method. Microporous Mesoporous Mater. 148(1), 15–24 (2012)

    Article  Google Scholar 

  • Lyn, M.E., Burnett, D., Garcia, A.R., Gray, R.: Interaction of water with three granular biopesticide formulations. J. Agric. Food Chem. 58, 1804–1814 (2010)

    Article  Google Scholar 

  • McLintock, J.S.: The Elovich equation in chemisorption kinetics. Nature 216, 1205–1205 (1967)

    Article  Google Scholar 

  • Mehta, P.K., Monterio, P.J.M.: Concrete, Microstructure, Properties and Materials. McGraw-Hill, London (2006)

    Google Scholar 

  • Miah, M.Y., Volchek, K., Kuang, W.X., Tezel, F.H.: Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions. J. Hazard. Mater. 183, 712–717 (2010)

    Article  Google Scholar 

  • Moradi, O., Fakhri, A., Adami, S., Adami, S.: Isotherm, thermodynamic, kinetics, and adsorption mechanism studies of Ethidium bromide by single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube. J. Colloid Interface Sci. 395, 224–229 (2013)

    Article  Google Scholar 

  • Mugge, J., Bosch, H., Reith, T.: Measuring and modelling gas adsorption kinetics in single porous particles. Chem. Eng. Sci. 56, 5351–5360 (2001)

    Article  Google Scholar 

  • Oh, J.S., Shim, W.G., Lee, J.W., Kim, J.H., Moon, H., Seo, G.: Adsorption equilibrium of water vapor on mesoporous materials. J. Chem. Eng. Data 48, 1458–1462 (2003)

    Article  Google Scholar 

  • Oswin, C.R.: The kinetics of package life. III. Isotherm. J. Soc. Chem. Ind. 65(12), 419–421 (1946)

    Article  Google Scholar 

  • Pavlik, Z., Zumar, J., Medved, I., Cerny, R.: Water vapor adsorption in porous building materials: experimental measurement and theoretical analysis. Transp. Porous Med. 91(3), 939–954 (2012)

    Article  Google Scholar 

  • Pellenq, R.J.-M., Coasne, B., Denoyel, R.O., Coussy, O.: Simple phenomenological model for phase transitions in confined geometry. 2. Capillary condensation/evaporation in cylindrical mesopores. Langmuir 25, 1393–1402 (2009)

    Article  Google Scholar 

  • Petrov, O., Furo, I.: Curvature-dependent metastability of the solid phase and the freezing-melting hysteresis in pores. Phys. Rev. E. 73, 0110608(7p) (2006)

  • Plazinski, W., Rudzinski, W., Plazinska, A.: Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv. Colloid Interface 152, 2–13 (2009)

    Article  Google Scholar 

  • Plazinski, W., Dziuba, J., Rudzinski, W.: Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption 19(5), 1055–1064 (2013)

    Article  Google Scholar 

  • Powers, T.C.: Some observations on the interpretation of creep data. Bull. RILEM (Paris) 1966(33), 381–391 (1966)

    Google Scholar 

  • Poyet, S.: Experimental investigation of the effect of temperature on the first desorption isotherm of concrete. Cem. Concr. Res. 39, 1052–1059 (2009)

    Article  Google Scholar 

  • Poyet, S., Charles, S., Honoré, N., L’hostis, V.: Assessment of the unsaturated water transport properties of an old concrete: determination of the pore-interaction factor. Cem. Concr. Res. 41, 1015–1023 (2011)

    Article  Google Scholar 

  • Poyet, S.: Determination of the intrinsic permeability to water of cementitious materials: influence of the water retention curve. Cem. Concr. Compos. 35(1), 127–135 (2013)

    Article  Google Scholar 

  • Pradas, M.M., Sánchez, M.S., Ferrer, G.G., Ribelles, J.M.G.: Thermodynamics and statistical mechanics of multilayer adsorption. J. Chem. Phys. 121(17), 8524–8531 (2004)

    Article  Google Scholar 

  • Qin, M., Belarbi, R., Ait-Mokhtar, A., Nilsson, L.O.: Nonisothermal moisture transport in hygroscopic building materials: modeling for the determination of moisture transport coefficients. Transp. Porous Med. 72(2), 255–271 (2008)

    Article  Google Scholar 

  • Ranaivomanana, H., Verdier, J., Sellier, A., Bourbon, X.: Toward a better comprehension and modeling of hysteresis cycles in the water sorption-desorption process for cement based materials. Cem. Concr. Res. 41, 817–827 (2011)

    Article  Google Scholar 

  • Richardson, I.G.: Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of C–S–H: applicability to hardened pastes of tricalcium silicate, \(\beta \)-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res. 34, 1733–1777 (2004)

    Article  Google Scholar 

  • Saeidpour, M., Wadsö, L.: Moisture equilibrium of cement based materials containing slag or silica fume and exposed to repeated sorption cycles. Cem. Concr. Res. 69, 88–95 (2015)

    Article  Google Scholar 

  • Scrivener, K.L., Crumbie, A.K., Laugesen, P.: The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci. 12, 411–421 (2004)

    Article  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pieotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  Google Scholar 

  • Tennis, P.D., Jennings, H.M.: A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem. Concr. Res. 30, 855–863 (2000)

    Article  Google Scholar 

  • Thiery, M., Dangla, P., Belin, P., Habert, G., Roussel, N.: Carbonation kinetics of a bed of recycled concrete aggregates: a laboratory study on model materials. Cem. Concr. Res. 46, 50–65 (2013)

    Article  Google Scholar 

  • Thomas, J.J., Jennings, H.M.: A colloidal interpretation of chemical aging of the C–S–H gel and its effects on the properties of cement paste. Cem. Concr. Res. 36, 30–38 (2006)

    Article  Google Scholar 

  • Timmermann, E.O.: Multilayer sorption parameters: BET or GAB values? Colloid Surf. A 220, 235–260 (2003)

    Article  Google Scholar 

  • Volchek, K., Miah, M.Y., Kuang, W.X., DeMaleki, Z., Tezel, F.H.: Adsorption of cesium on cement mortar from aqueous solutions. J. Hazard. Mater. 194, 331–337 (2011)

    Article  Google Scholar 

  • Wang, Q., Yan, P., Mi, G.: Effect of blended steel slag–GBFS mineral admixture on hydration and strength of cement. Constr. Build. Mater. 35, 8–14 (2012)

    Article  Google Scholar 

  • Wu, M., Johannesson, B., Geiker, M.: A study of the water vapor sorption isotherms of hardened cement pastes: possible pore structure changes at low relative humidity and the impact of temperature on isotherms. Cem. Concr. Res. 56, 97–105 (2014)

    Article  Google Scholar 

  • Yang, W., Sokhansanj, S., Cenkowski, S., Tang, J., Wu, Y.: A general model for sorption hysteresis in food materials. J. Food Eng. 33, 421–444 (1997)

    Article  Google Scholar 

  • Zeng, Q., Li, K.: Reaction and microstructure of cement-fly-ash system. Mater. Struct. 48, 1703–1716 (2015)

  • Zeng, Q., Li, K., Fen-Chong, T., Dangla, P.: Pore structure characterization of cement pastes blended with high-volume fly-ash. Cem. Concr. Res. 42, 194–204 (2012a)

    Article  Google Scholar 

  • Zeng, Q., Li, K., Fen-Chong, T., Dangla, P.: Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes. Constr. Build. Mater. 27, 560–569 (2012b)

    Article  Google Scholar 

  • Zeng, Q., Li, K., Fen-Chong, T., Dangla, P.: Analysis of pore structure, contact angle and pore entrapment of blended cement pastes from mercury porosimetry data. Cem. Concr. Compos. 34, 1053–1060 (2012c)

  • Zeng, Q., Li, K., Fen-Chong, T., Dangla, P.: Water removal by freeze-drying of hardened cement paste. Dry. Technol. 31, 67–71 (2013)

    Article  Google Scholar 

  • Zhang, Z., Thiery, M., Baroghel-Bouny, V.: A review and statistical study of existing hysteresis models for cementitious materials. Cem. Concr. Res. 57, 44–60 (2014)

    Article  Google Scholar 

  • Zhang, J., Scherer, G.W.: Comparison of methods for arresting hydration of cement. Cem. Concr. Res. 41, 1024–1036 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by NSFC Project Grant No. 51378295. Also, the help of Mr. Zhiling Zhang and Mr. Yuyang Wang is acknowledged for their work on the sorption experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 38 KB)

Supplementary material 2 (doc 80 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Zhang, D. & Li, K. Kinetics and Equilibrium Isotherms of Water Vapor Adsorption/Desorption in Cement-Based Porous Materials. Transp Porous Med 109, 469–493 (2015). https://doi.org/10.1007/s11242-015-0531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0531-8

Keywords

Navigation