Skip to main content
Log in

Effect of Particle Mixture on Seepage Properties of Crushed Mudstones

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Crushed rocks, especially mudstones, whose seepage properties are strongly influenced by particle mixture during compaction due to muds will be washed away after water flow. The present study focuses on the porosity evolution, particle crushing and non-Darcy seepage properties, during the compaction, of a crushed mudstone particle size mixture. An experiment based on a self-designed water flow apparatus, the MTS 815.02 system and a non-Darcy testing method were performed to investigate the effect of particle size mixture on seepage properties and compaction behavior of crushed mudstones. In particular, the Reynolds number calculation of particle mixture shows that water flow has involved the influence of non-Darcy flow. Testing results indicate that: (1) The porosity of crushed mudstones is strongly influenced by compaction (axial displacement) and particle mixture. The porosity decreases with the increase in axial displacement and decrease in bigger particle size, respectively. (2) During the compaction, some larger particles were crushed which is a main reason to cause size 0–2.5 mm. Muds washed away are the main reason for weight lost in mudstone samples due to the effect of water seepage. (3) Non-Darcy seepage properties of crushed mudstones were strongly influenced by mixture sizes and compaction, and in general, during the axial compression, the permeability \(k\) decreases while the non-Darcy coefficient \(\beta \) increases with the decrease in porosity \(\phi \). (4) The fluctuations of \(k\)\(\phi \) and \(\beta \)\(\phi \) curves show that the lager the particle size, the more the fluctuation displayed in the curves. The permeability \(k\) of minimum size shows one order of magnitude less than that for largest one. (5) The porosity, particle crushing and seepage properties of crushed mudstones are not only related to compaction levels, mixture sizes, but also related to the style of arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(d\) :

Average diameter of the grains (L)

\(d_\mathrm{p}\) :

Diameter of piston (L)

\(d_\mathrm{r}\) :

Diameter of mudstone sample (L)

\(h_0 \) :

Initial height of the crushed mudstone sample (L)

\(H_1 \) :

Cylinder tube height (L)

\(H_2 \) :

Piston height (L)

\(H_3\) :

Thickness of the felt filtration pad (L)

\(H_4 \) :

Thickness of porous plate (L)

\(i,n\) :

Spatial indices (\(-\))

\(k\) :

Permeability (\(\hbox {L}^{2}\))

\(L\) :

Sample length (L)

\(m\) :

Mass of the crushed mudstone sample (M)

\(p\) :

Pore pressure (\(\hbox {ML}^{-1}\,\hbox {T}^{-2}\))

\(p_\mathrm{a} \) :

Pore pressure connected with atmosphere (\(\hbox {ML}^{-1}\,\hbox {T}^{-2}\))

\(p_\mathrm{b} \) :

Pore pressure at the intake boundary (\(\hbox {ML}^{-1}\,\hbox {T}^{-2}\))

\(Q\) :

Cross section area of the cylinder tube (\(\hbox {L}^{2}\))

\(Re\) :

Reynolds number (\(-\))

\(S\) :

Axial displacement (L)

\(t\) :

Time (T)

\(v\) :

Water flow velocity (\(\hbox {LT}^{-1}\))

\(v_\mathrm{p}\) :

Supercharger piston velocity (\(\hbox {LT}^{-1}\))

\(z\) :

Vertical axis going through the center of the sample (L)

\(\partial \) :

Partial differential operator (\(-\))

\({\partial ()}/{\partial z}\) :

Nabla operator (\(\hbox {L}^{-1}\))

\(\beta \) :

Non-Darcy coefficient (\(\hbox {L}^{-1}\))

\(\mu \) :

Kinetic viscosity (\(\hbox {ML}^{-1}\,\hbox {T}^{-1}\))

\(\phi \) :

Porosity (\(-\))

\(\rho _\mathrm{s} \) :

Mass density (\(\hbox {ML}^{-3}\))

\(\rho _\mathrm{w} \) :

Water density (\(\hbox {ML}^{-3}\))

References

  • Aydin, A., Borja, R.I., Eichhubl, P.: Geological and mathematical framework for failure modes in granular rock. J. Struct. Geol. 28(1), 83–98 (2006)

    Article  Google Scholar 

  • Bai, H.B., Ma, D., Chen, Z.Q.: Mechanical behavior of groundwater seepage in Karst collapse pillars. Eng. Geol. 164, 101–106 (2013)

    Article  Google Scholar 

  • Blodgett, S., Kuipers, J.R.: Underground Hard-Rock Mining: Subsidence and Hydrologic Environmental Impacts. Centre of Science in Public Participation, Bozeman (2002)

    Google Scholar 

  • Blotz, L.R., Benson, C.H., Boutwell, G.P.: Estimating optimum water content and maximum dry unit weight for compacted clays. J. Geotech. Geoenviron. Eng. ASCE 124(9), 907–912 (1998)

    Article  Google Scholar 

  • Casini, F., Viggiani, G.M.B.: Experimental investigation of the evolution of grading of an artificial material with crushable grains under different loading conditions. In: Proceedings of the 5th International Symposium on Deformation Characteristics of Geomaterials, Seoul, Korea, pp. 957–964 (2011)

  • Casini, F., Viggiani, G.M.B., Springman, S.M.: Breakage of an artificial crushable material under loading. Granul. Matter 15(5), 661–673 (2013)

    Article  Google Scholar 

  • Chen, Z.Q., Miao, X.X., Mao, X.B.: Stability of Forcheimer’s non-Darcy flow and probability of water inrush in coal mine. In: Proceedings of the 5th International Symposium on Mining Science and Technology, pp. 513–516 (2004)

  • Cho, G.-C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. ASCE 132(5), 591–602 (2006)

    Article  Google Scholar 

  • Coop, M.R., Sorensen, K.K., Freitas, T.B., Georgoutsos, G.: Particle breakage during shearing of a carbonate sand. Geotechnique 54(3), 157–163 (2004)

    Article  Google Scholar 

  • Ding, H.D., Miao, X.X., Ju, F., Wang, X.L., Wang, Q.C.: Strata behavior investigation for high-intensity mining in the water-rich coal seam. Int. J. Min. Sci. Technol. 24(3), 299–304 (2014)

  • Engelhardt, I., Finsterle, S.: Thermal-hydraulic experiments with bentonite/crushed rock mixtures and estimation of effective parameters by inverse modeling. Appl. Clay Sci. 23(1–4), 111–120 (2003)

    Article  Google Scholar 

  • Forchheimer, P.: Hydrolik. Teubner, Leipzig (1914)

    Google Scholar 

  • Fredlund, D.G., Morgenstern, N.R., Widger, R.A.: The shear strength of unsaturated soils. Can. Geotech. J. 15(3), 313–321 (1978)

    Article  Google Scholar 

  • Hamdani, I.H.: Optimum moisture content for compacting soils one-point method. J. Irrig. Drain. Eng. 109(2), 232–237 (1983)

    Article  Google Scholar 

  • Hardin, B.O.: Crushing of soil particles. J. Geotech. Eng., ASCE 111(10), 1177–1192 (1985)

    Article  Google Scholar 

  • Huang, X.W., Tang, P., Miao, X.X., Chen, Z.Q.: Testing study on seepage properties of crushed sandstone. Rock Soil Mech. 26(9), 1385–1388 (2005)

    Google Scholar 

  • Jamei, M., Guiras, H., Chtourou, Y., Kallel, A., Romero, E., Georgopoulos, I.: Water retention properties of perlite as a material with crushable soft particles. Eng. Geol. 122(3–4), 261–271 (2011)

    Article  Google Scholar 

  • Johnsen, Ø., Chevalier, C., Lindner, A., Toussaint, R., Clément, E., Måløy, K.J., Flekkøy, E.G., Schmittbuhl, J.: Decompaction and fluidization of a saturated and confined granular medium by injection of a viscous liquid or a gas. Phys. Rev. E Am. Phys. Soc. 78, 051302 (2008)

    Article  Google Scholar 

  • Johnsen, Ø., Toussaint, R., Måløy, K.J., Flekkøy, E.G., Schmittbuhl, J.: Coupled air/granular flow in a linear Hele-Shaw cell. Phys. Rev. E Am. Phys. Soc. 77, 011301 (2007)

    Article  Google Scholar 

  • Kogure, K.: Experimental study on permeability of crushed rock. Mem. Def. Acad. Jpn. 16(4), 149–154 (1976)

    Google Scholar 

  • Kong, X.Y.: Advanced Mechanics of Fluid in Porous Media, 2nd edn. Press of University of Science and Technology of China, Hefei (2010)

    Google Scholar 

  • Lade, P.V., Yamamuro, J.A., Bopp, P.A.: Significance of particle crushing in granular materials. J. Geotech. Eng. ASCE 122(4), 309–316 (1996)

    Article  Google Scholar 

  • Legrand, J.: Revisited analysis of pressure drop in flow through crushed rocks. J. Hydraul. Eng. 128(11), 1027–1031 (2002)

    Article  Google Scholar 

  • Li, S.C., Miao, X.X., Chen, Z.Q.: Nonlinear dynamic analysis on non-Darcy seepage in over-broken rock mass. J. China Coal Soc. 30(5), 557–561 (2005)

    Google Scholar 

  • Liu, W.Q., Fei, X.D., Fang, J.N.: Rules for confidence intervals of permeability coefficients for water flow in over-broken rock mass. Int. J. Min. Sci. Technol. 22, 29–33 (2012)

    Article  Google Scholar 

  • Liu, W.Q., Miao, X.X., Chen, Z.Q.: A testing method for determining the permeability of overbroken rock. Chin. J. Exp. Mech. 18, 56–61 (2003)

    Article  Google Scholar 

  • Lobo-Guerrero, S., Vallejo, L.E.: Discrete element method evaluation of granular crushing under direct shear test conditions. J. Geotech. Geoenviron. Eng. ASCE 131(10), 1295–1300 (2005)

    Article  Google Scholar 

  • Ma, D., Miao, X.X., Chen, Z.Q., Mao, X.B.: Experimental investigation of seepage properties of fractured rocks under different confining pressures. Rock Mech. Rock Eng. 46, 1135–1144 (2013)

    Article  Google Scholar 

  • Ma, D., Miao, X.X., Jiang, G.H., Bai, H.B., Chen, Z.Q.: An experimental investigation of permeability measurement of water flow in crushed rocks. Transp. Porous Media 105, 571–595 (2014)

    Article  Google Scholar 

  • Ma, D., Bai, H.B., Wang, Y.M.: Mechanical behavior of a coal seam penetrated by a karst collapse pillar: mining induced groundwater inrush risk. Nat. Hazards. 75, 2137–2151 (2015)

    Article  Google Scholar 

  • Ma, Z.G.: Studies on Characteristics of Water Seepage in Crushed Rock Mass of Gob. China University of Mining and Technology, Xuzhou (2003)

    Google Scholar 

  • Miao, X.X., Li, S.C., Chen, Z.Q., Liu, W.Q.: Experimental study of seepage properties of broken sandstone under different porosities. Transp. Porous Media 86, 805–814 (2011)

    Article  Google Scholar 

  • Miao, X.X., Liu, W.Q., Chen, Z.Q.: Seepage Theory of Mining Strata. Science Press, Beijing (2004)

    Google Scholar 

  • MTS System Corporation: Teststar Materials Testing Workstation Installation Reference Manual (1993)

  • Niebling, M., Toussaint, R., Flekkøy, E.G., Måløy, K.J.: Dynamic aero fracture of dense granular packings. Phys. Rev. E Am. Phys. Soc. 86, 061315 (2012)

    Article  Google Scholar 

  • Pappas, D.M., Mark, C.: Behavior of simulated longwall gob material. Report of investigations, US Bureau of Mines (1993)

  • Peng, S.S.: Longwall Mining, 2nd edn. Society for Mining Metallurgy, and Exploration, Littleton (2006)

    Google Scholar 

  • Pradip, K.G.N., Venkataraman, P.: Non-Darcy converging flow through coarse granular media. J. Inst. Eng. (India) Civ. Eng. Div. 76, 6–11 (1995)

    Google Scholar 

  • Rong, H.R., Bai, H.B.: Pore structure characteristics of the relative water-resisting layer on the top of the ordovician in longgu coal mine. Int. J. Min. Sci. Technol. 24(5), 657–661 (2014)

    Article  Google Scholar 

  • Shi, L.Q., Qiu, M., Wei, W.X., Xu, D.J., Han, J.: Water inrush evaluation of coal seam floor by integrating the water inrush coefficient and the information of water abundance. Int. J. Min. Sci. Technol. 24(5), 677–681 (2014)

    Article  Google Scholar 

  • Singh, M.M.: Mine subsidence. In: Hartman, H.L. (eds.) SME Mining Engineers Handbook, pp. 938–71 (1992)

  • Wang, J.-J., Zhu, J.-G., Chiu, C.F., Zhang, H.: Experimental study on fracture toughness and tensile strength of a clay. Eng. Geol. 94(1–2), 65–75 (2007)

    Article  Google Scholar 

  • Wang, J.-J., Zhang, H.-P., Zhang, L., Liang, Y.: Experimental study on heterogeneous slope responses to drawdown. Eng. Geol. 147–148, 52–56 (2012)

    Article  Google Scholar 

  • Wang, J.-J., Zhang, H.-P., Zhang, L., Liang, Y.: Experimental study on self-healing of crack in clay seepage barrier. Eng. Geol. 159, 31–35 (2013a)

    Article  Google Scholar 

  • Wang, J.-J., Zhao, D., Liang, Y., Wen, H.-B.: Angle of repose of landslide debris deposits induced by 2008 Sichuan Earthquake. Eng. Geol. 156, 103–110 (2013b)

    Article  Google Scholar 

  • Wang, J.-J., Zhang, H.-P., Tang, S.-C., Liang, Y.: Effects of particle size distribution on shear strength of accumulation soil. J. Geotech. Geoenviron. Eng. ASCE 139(11), 1994–1997 (2013c)

    Article  Google Scholar 

  • Wang, J.J., Zhang, H.P., Deng, D.P., Liu, M.W.: Effects of mudstone particle content on compaction behavior and particle crushing of a crushed sandstone-mudstone particle mixture. Eng. Geol. 167, 1–5 (2013d)

    Article  Google Scholar 

  • Wu, D., Hu, Y., Fan, X.: Visual simulation for granular rocks crush in virtual environment based on fractal geometry. Simul. Model. Pract. Theory 17(7), 1254–1266 (2009)

    Article  Google Scholar 

  • Xiaojihan Geological and Mineral Resource Exploration (XGMRE): Northern Shaanxi Jurassic Coal Area. Shaanxi Huadian Yuheng Coal Industry Co., Ltd, Shaanxi, China (2009)

  • Yan, Z.-L., Wang, J.-J., Chai, H.-J.: Influence of water level fluctuation on phreatic line in silty soil model slope. Eng. Geol. 113(1–4), 90–98 (2010)

    Article  Google Scholar 

  • Zoback, M.D., Byerlee, J.D.: Note on the deformational behavior and permeability of crushed granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 13(10), 291–294 (1976)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2013CB227900), the National Natural Science Foundation of China (U1261201, 51322401 and 51421003), the National High Technology Joint Research Program of China (2012BAB13B00), the 111 Project of China (B07028), the Basic Research Program of Jiangsu Province (BK20130051) and the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (2014YC09 and 2014ZDPY08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Bai, H., Chen, Z. et al. Effect of Particle Mixture on Seepage Properties of Crushed Mudstones. Transp Porous Med 108, 257–277 (2015). https://doi.org/10.1007/s11242-015-0473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0473-1

Keywords

Navigation