Skip to main content
Log in

Hydraulic Operating Conditions and Particle Concentration Effects on Physical Clogging of a Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The effects of the hydraulic operating conditions and the concentration of suspended particles (SP) in pore fluid on the filtration and physical clogging of a porous medium were investigated. Polydisperse kaolinite SP was injected into a sand-filled column under two different operating conditions: constant flow rate and constant head. The retention rate was observed to be greater under the condition of constant head than under the condition of constant flow rate, mainly for the high concentrations. Under constant head, the porous medium were clogged more rapidly; the pore velocities decreased with time and the permeability reduction occurred in fewer pore volumes injected than under constant flow rate. Under the same hydraulic condition, an increase of the concentration leads to a more rapid reduction in permeability. Regardless of the hydraulic operating conditions, particle-size analysis shows an increase with time of the median diameter of the particle-size distribution of the recovered particles. At the beginning of the filtration process, larger particles are mainly retained in the column. As the injection volume increases, the larger particles are better transported and the size of particles observed in the effluent gradually increases. It appears that the median diameter of the recovered SP increases more rapidly with time under constant flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahfir, N.-D., Wang, H.Q., Benamar, A., Alem, A., Massei, N., Dupont, J.-P.: Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol. J. 15, 659–668 (2007)

    Article  Google Scholar 

  • Ahfir, N.-D., Benamar, A., Alem, A., Wang, H.Q.: Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. Transp. Porous Med. 76, 289–307 (2009)

    Article  Google Scholar 

  • Alem, A., Elkawafi, A., Ahfir, N.-D., Wang, H.Q.: Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrogeol. J. 21, 573–586 (2013)

    Article  Google Scholar 

  • Auset, M., Keller, A.A.: Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels. Water Resour. Res. 42, W12S02 (2006). doi:10.1029/2005WR004639

    Article  Google Scholar 

  • Bai, R., Tien, C.: Effect of deposition in deep-bed filtration: determination and search of rate parameters. J. Colloid Interface Sci. 231, 299–311 (2000)

    Article  Google Scholar 

  • Boller, M.A., Kavanaugh, M.C.: Particle characteristics and headloss increase in granular media filtration. Water Res. 29(4), 1139–1149 (1995)

    Article  Google Scholar 

  • Bouwer, H.: Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J. 10, 121–142 (2002)

    Article  Google Scholar 

  • Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J.: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 38(12), 1327 (2002). doi:10.1029/2002WR001340

    Article  Google Scholar 

  • Bradford, S.A., Simunek, J., Bettahar, M., Van Genuchten, M.T., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 37, 2242–2250 (2003)

    Article  Google Scholar 

  • Bradford, S.A., Tadassa, Y.F., Pachepsky, Y.: Transport of Giardia and Manure suspensions in saturated porous media. J. Environ. Qual. 35, 749–757 (2006)

    Article  Google Scholar 

  • Bradford, S.A., Torkzaban, S., Walker, S.L.: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41, 3012–3024 (2007)

    Article  Google Scholar 

  • Brovelli, A., Malaguerra, F., Barry, D.A.: Bioclogging in porous media: model development and sensitivity to initial conditions. Environ. Model. Softw. 24, 611–626 (2009)

    Article  Google Scholar 

  • Compere, F., Porel, G., Delay, F.: Transport and retention of clay particles in saturated porous media: influence of ionic strength and pore velocity. J. Contam. Hydrol. 49, 1–21 (2001)

    Article  Google Scholar 

  • Detay, M.: Le forage d’eau: Réalisation, entretien, réhabilitation (water drilling: realisation, maintenance, rehabilitation). Masson edition, Paris (1993)

    Google Scholar 

  • Foppen, J.W.A., Mporokoso, A., Schijven, J.F.: Determining straining of \( Escherichia\,coli \) from breakthrough curves. J. Contam. Hydrol. 76, 191–210 (2005)

    Article  Google Scholar 

  • Hajra, M.G., Reddi, L.N., Glasgow, L.A., Xiao, M., Lee, I.M.: Effects of ionic strength on fine particle clogging of soil filters. J. Geotech. Geoenviron. Eng. 128, 631–639 (2002)

    Article  Google Scholar 

  • Hand, V.L., Lloyd, J.R., Vaughan, D.J., Wilkins, M.J., Boult, S.: Experimental studies of the influence of grain size, oxygen availability and organic carbon availability on bioclogging in porous media. Environ. Sci. Technol. 42(5), 1485–1491 (2008)

    Article  Google Scholar 

  • Herzig, J.P., Leclerc, D.M., Le Goff, P.: Flow of suspension through porous media: application to deep bed filtration. Indian Eng. Chem. 62, 8–35 (1970)

    Article  Google Scholar 

  • Hunt, J.R., Hwang, B.C., McDowell-Boyer, L.M.: Solids accumulation during deep bed filtration. Environ. Sci. Technol. 27, 1099–1107 (1993)

    Article  Google Scholar 

  • Johnson, W.P., Xiqing, L., Shoeleh, A.: Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv. Water Resour. 30, 1432–1454 (2007)

    Article  Google Scholar 

  • Kehat, E., Lin, A., Kaplan, A.: Clogging of filter media. Ind. Eng. Chem. Process Des. Dev. 6(1), 48–55 (1967)

    Article  Google Scholar 

  • Khilar, K.C., Fogler, H.S.: The existence of a critical salt concentration for particle release. J. Colloid Interface Sci. 101, 214–224 (1984)

    Article  Google Scholar 

  • Lee, J., Koplik, J.: Network model for deep bed filtration. Phys. Fluids 13(5), 1076–1086 (2001)

    Article  Google Scholar 

  • Mays, D.C., Hunt, J.R.: Hydrodynamic aspects of particle clogging in porous media. Environ. Sci. Technol. 39, 577–584 (2005)

    Article  Google Scholar 

  • Mays, D.C., Hunt, J.R.: Hydrodynamic and chemical factors in clogging by montmorillonite in porous media. Environ. Sci. Technol. 41(16), 5666–5671 (2007)

    Article  Google Scholar 

  • McGechan, M.B., Lewis, D.R.: Transport of particulate and colloid-sorbed contaminants through soil, part 1: general principles. Biosyst. Eng. 83, 255–273 (2002)

    Article  Google Scholar 

  • Moghadasi, J., Müller-Steinhagen, H., Jamialahmadi, M., Sharif, A.: Theoretical and experimental study of particle movement and deposition in porous media during water injection. J. Pet. Sci. Eng. 43, 163–181 (2004)

    Article  Google Scholar 

  • Ochi, J., Vernoux, J.-F.: A two-dimensional network model to simulate permeability decrease under hydrodynamic effect of particle release and capture. Transp. Porous Med. 37(3), 303–325 (1999)

    Article  Google Scholar 

  • Reddi, L.N., Xiao, M., Hajra, M.G., Lee, I.M.: Permeability reduction of soil filters due to physical clogging. J. Geotech. Geoenviron. Eng. 126, 236–246 (2000)

    Article  Google Scholar 

  • Reddi, L.N., Xiao, M., Malay, G.H., Lee, I.M.: Physical clogging of soil filters under constant flow rate versus constant head. Can. Geotech. J. 42, 804–811 (2005)

    Article  Google Scholar 

  • Sansalone, J., Kuang, X., Ying, G., Ranieri, V.: Filtration and clogging of permeable pavement loaded by urban drainage. Water Res. 46(20), 6763–6774 (2012)

    Article  Google Scholar 

  • Sen, T.K., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 119, 71–96 (2006)

    Article  Google Scholar 

  • Shellenberger, K., Logan, B.E.: Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environ. Sci. Technol. 36, 184–189 (2002)

    Article  Google Scholar 

  • Tong, M., Johnson, W.P.: Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environ. Sci. Technol. 40, 7725–7731 (2006)

    Article  Google Scholar 

  • Torkzaban, S., Bradford, S.A., Walker, S.L.: Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir 23, 9652–9660 (2007)

    Article  Google Scholar 

  • Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38, 529–536 (2004)

    Article  Google Scholar 

  • Vigneswaran, S., Suazo Ronillo, B.: A detailed investigation of physical and biological clogging during artificial recharge. Water Air Soil Pollut. 35, 119–140 (1987)

    Article  Google Scholar 

  • Veerapaneni, S., Wiesner, M.R.: Deposit morphology and head loss development in porous media. Environ. Sci. Technol. 31(10), 2738–2744 (1997)

    Article  Google Scholar 

  • Wegelin, M.: Surface water treatment by roughing filters: a design, construction and operation manual. Swiss Federal Institute for Environmental Science and Technology (EAWAG) and Department Water and Sanitation in Developing Countries (SANDEC), Dübendorf, Switzerland (1996)

    Google Scholar 

  • Xu, S.P., Saiers, J.E.: Colloid straining within water-saturated porous media: effect of colloid size nonuniformity. Water Resour. Res. 45, W05501 (2009). doi:10.1029/02008WR007258

    Article  Google Scholar 

  • Zamani, A., Maini, B.: Flow of dispersed particles through porous media—deep bed filtration. J. Pet. Sci. Eng. 69, 71–88 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Région Haute Normandie (CPER). The authors thank Claude Houssin (LOMC – UMR 6294 CNRS – Université du Havre) for his assistance in the preparation of the experimental set-up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasre-Dine Ahfir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alem, A., Ahfir, ND., Elkawafi, A. et al. Hydraulic Operating Conditions and Particle Concentration Effects on Physical Clogging of a Porous Medium. Transp Porous Med 106, 303–321 (2015). https://doi.org/10.1007/s11242-014-0402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0402-8

Keywords

Navigation