Skip to main content
Log in

Quantifying the Representative Size in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present a new approach to quantify the representative quality of pore-scale samples of porous media. It is shown that the flow field uniformity serves as a reliable criterion to decide if the computed flow properties are representative at larger sample sizes. The proposed approach is computationally inexpensive and requires minimal effort to implement. We rely on the correlation matrix of flow field to quantify the representative quality of the computed flow properties at the pore scale. Using this approach, we have been able to study several pore-networks and a high-resolution image of a sandstone, and quickly answer if the computed flow properties from these pore-networks/images are representative of the actual media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Raoush, R., Papadopoulos, A.: Representative elementary volume analysis of porous media using X-ray computed tomography. Powder Technol. 200(1–2), 69–77 (2010)

    Article  Google Scholar 

  • Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007)

    Article  Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Garboczi, E.J.: Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics 67, 1396–1405 (2002)

    Article  Google Scholar 

  • Balhoff, M.T., Thomas, S.G., Wheeler, M.F.: Mortar coupling and upscaling of pore-scale models. Comput. Geosci. 12(1), 15–27 (2008)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Courier Dover, New York (1972)

    Google Scholar 

  • Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Insights into non-fickian solute transport in carbonates. Water Resour. Res. 49, 2714–2728 (2013a)

    Article  Google Scholar 

  • Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J.: Prediction of non-fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87(1), 013, 011 (2013b)

    Article  Google Scholar 

  • Dagan, G.: Flow and Transport in Porous Formations. Springer, New York (1989)

    Book  Google Scholar 

  • Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036, 307 (2009)

    Article  Google Scholar 

  • Fredrich, J.T., Menendez, B., Wong, T.F.: Imaging the pore structure of geomaterials. Science 268(5208), 276–279 (1995)

    Article  Google Scholar 

  • Fredrich, J.T., DiGiovanni, A.A., Noble, D.R.: Predicting macroscopic transport properties using microscopic image data. J. Geophys. Res. 11(B03), 201 (2006)

    Google Scholar 

  • Gelhar, L.W.: Stochastic Subsurface Hydrolog. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  • Joekar-Niasar, V., Hassanizadeh, S.M., Leijnse, A.: Insights into the relationships among capillary pressure, saturation, interfacial area and relative permeability using pore-scale network modeling. Transp. Porous Media 74, 201–219 (2008)

    Article  Google Scholar 

  • Klov. T., Oren, P.E., Stensen, J.A., Lerdahl, T.R., Berge, L.I., Bakke, S., Boassen, T., Virnovsky, G.: Pore-to-field scale modeling of wag. SPE 84549 (2003)

  • Li, H., Pan, C., Miller, C.T.: Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Phys. Rev. E 72, 026, 705 (2005)

    Article  Google Scholar 

  • Lindquist, W.B., Venkatarangan, A.: Investigating 3d geometry of porous media from high resolution images. Phys. Chem. Earth 24, 639–644 (1999)

    Google Scholar 

  • Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-ct images. Math. Geosci. 45, 103–125 (2012)

    Article  Google Scholar 

  • Neuman, S.P.: Generalized scaling of permeabilities: validation and effect of support scale. Geophys. Res. Lett. 21, 349–352 (1994)

    Article  Google Scholar 

  • Norris, R.J., Lewis, J.J.M.: The geological modeling of effective permeability in complex heterolithic facies. SPE 22692, 359–374 (1991)

    Google Scholar 

  • Oren, P.E., Bakke, S., Arntzen, O.J.: Extending predictive capabilities to network models. SPE J. 3(4), 324–336 (1998)

    Article  Google Scholar 

  • Oren, P.E., Bakke, S., Held, R.: Direct pore-scale computation of material and transport properties for north sea reservoir rocks. Water Resour. Res. 43, W12S04 (2007)

    Article  Google Scholar 

  • Ovaysi, S.: Direct pore-level modeling of fluids flow in porous media. Ph.D. thesis, University of Wyoming (2010)

  • Ovaysi, S., Piri, M.: Direct pore-level modeling of incompressible fluid flow in porous media. J. Comput. Phys. 229(19), 7456–7476 (2010)

    Article  Google Scholar 

  • Ovaysi, S., Piri, M.: Pore-scale modeling of dispersion in disordered porous media. J. Contam. Hydrol. 124(1–4), 68–81 (2011)

    Article  Google Scholar 

  • Ovaysi, S., Piri, M.: Multi-GPU acceleration of direct pore-scale modeling of fluid flow in natural porous media. Comput. Phys. Commun. 183(9), 1890–1898 (2012)

    Article  Google Scholar 

  • Ovaysi, S., Piri, M.: Pore-scale dissolution of \(\text{ CO }_2\)+\(\text{ SO }_2\) in deep saline aquifers. Int. J. Greenhouse Gas Control 15, 119–133 (2013)

    Article  Google Scholar 

  • Ovaysi, S., Piri, M.: Pore-space alteration induced by brine acidification in subsurface geologic formations. Water Resour. Res. 50, 1–13 (2014)

    Article  Google Scholar 

  • Patzek, T.W.: Verification of a complete pore network simulator of drainage and imbibition. SPE J. 6(2), 144–156 (2001)

    Article  Google Scholar 

  • Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. i. model description. Phys. Rev. E 71, 026, 301 (2005)

    Article  Google Scholar 

  • Prodanovic, M., Lindquist, W.B., Seright, R.S.: Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging. J. Colloid Interface Sci. 298(1), 282–297 (2006)

    Article  Google Scholar 

  • Ramstad, T., Idowu, N., Nardi, C., Oren, P.E.: Relative permeability calculations from two-phase flow simulations directly on digital images of porous media. Transp. Porous Media 94(2), 487–504 (2012)

    Article  Google Scholar 

  • Raoof, A., Hassanizadeh, S.M., Leijnse, A.: Upscaling transport of adsorbing solutes in porous media: pore-network modeling. Vadose Zone J. 9, 624–636 (2010)

    Article  Google Scholar 

  • Rustad, A.B., Theting, T.G., Held, R.J.: Pore scale estimation, up scaling and uncertainty modeling for multiphase properties. SPE 113005 (2008)

  • Siena, M., Riva, M., Hyman, J.D., Winter, C.L., Guadagnini, A.: Relationship between pore size and velocity probability distributions in stochastically generated porous media. Phys. Rev. E 89(013), 018 (2014)

    Google Scholar 

  • Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., Adler, P.M.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001–2004 (1994)

    Article  Google Scholar 

  • Valvatne, P.H., Piri, M., Blunt, M.J.: Predictive pore scale modeling of single and multiphase flow. Transp. Porous Media 58(1–2), 23–41 (2005)

    Article  Google Scholar 

  • Wildenschild, D., Sheppard, A.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

  • Zhang, D., Zhang, R., Chen, S., Soll, W.E.: Pore scale study of flow in porous media: scale dependency, rev, and statistical rev. Geophys. Res. Lett. 27(8), 1195–1198 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the financial support from the Center for Frontiers of Subsurface Energy Security (CFSES) at The University of Texas at Austin under U.S. Department of Energy contract DE-SC0001114. Professor Martin J. Blunt from Imperial College and Hu Dong from iRock Technologies are gratefully thanked for sharing their network and micro-CT data with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Ovaysi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovaysi, S., Wheeler, M.F. & Balhoff, M. Quantifying the Representative Size in Porous Media. Transp Porous Med 104, 349–362 (2014). https://doi.org/10.1007/s11242-014-0338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0338-z

Keywords

Navigation