Skip to main content
Log in

Flow and Transport in Fractured Aquifers: New Conceptual Models Based on Field Measurements

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We derived new equations of fracture aperture (or tube diameter) as functions of a tortuosity factor that can be used in discrete models and even in continuum equivalent models to simulate fluid flow and pollutant transport in fractured aquifers. MODFLOW/MT3DMS water velocity predictions have been compared with those obtained using a specific software application which solves flow and transport problems in a 3D set of parallel fissures. The results of a pumping/tracer test carried out in a fractured limestone aquifer in Bari (Southern Italy) have been used to calibrate advective/dispersive tracer fluxes given by the applied models. The mean tracer velocity given by a breakthrough curve was greater than values predicted by continuum models. This discrepancy increased when the hydraulic conductivity of the considered fractured medium decreased. Successful simulations of flow and transport in the fractured limestone aquifer are then achieved by accommodating a new tortuosity factor in models. The importance of the proposed tortuosity factor correction lies in the possibility of taking into account the effective tracer velocity during flow and transport simulations in fractures even when using a continuum model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson M.P., Woessner W.W.: Applied Groundwater Modeling Simulation of Flow and Advective Transport. Academic Press, San Diego, CA (1992)

    Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media, pp. 125–127. American Elsevier Publishing Company, Inc, New York (1972)

    Google Scholar 

  • Bear J.: Modeling flow and contaminant transport in fractured rocks. In: Bear, J., Tsang, C.F., de Marsily, G. (eds) Flow and Contaminant Transport in Fractured Rock, pp. 1–37. Academic Press, San Diego, CA (1993)

    Google Scholar 

  • Berkowitz B., Bear J., Braester C.: Continuum models for contaminant transport in fractured porous formations. Water Resour. Res. 24(8), 1225–1236 (1988). doi:10.1029/WR024i008p01225

    Article  Google Scholar 

  • Budge J.T., Sharp J.M. Jr: Modelling the usefulness of spatial correlation analysis on karst system. Ground Water 47(3), 427–437 (2009)

    Article  Google Scholar 

  • Chiles, J.P., de Marsily, G.: Stochastic models of fracture system and their use in flow and transport modeling. In: Bear, J., Tsang, C.F., de Marsily, G. (eds.) Flow and Contaminant Transport in Fractured Rock, pp. 169–236. Academic Press, San Diego (1993)

  • Christakos G.: Random Field Models in Earth Sciences. Academic Press, San Diego, CA (1992)

    Google Scholar 

  • Darcel C., Bour O., Davy P., Dreuzy J.R.: Connectivity properties of two-dimensional fracture networks with stochastic fractal correlation. Water Resour. Res. 39(19), 1272 (2003). doi:10.1029/2002Wr001628

    Article  Google Scholar 

  • Gelhar L.W.: Stochastic Subsurface Hydrology, pp. 07632. Prentice-Hall Inc., Englewood Cliffs, NJ (1993)

    Google Scholar 

  • Green R.T., Painter S.L., Sun A., Worthington S.R.H.: Groundwater contamination in karst terrains. Water Air Soil Pollut. Focus 6, 157–170 (2006)

    Article  Google Scholar 

  • Gueguen, Y., Dienes, J.: Transport properties of rocks from statistics and percolation. Math. Geol. 21(1), 1–13 (1989). doi:10.1007/BF00897237

  • Harbaugh, A.W.: MODFLOW-2005, the US Geological Survey, Techniques and Methods 6-A16, Reston, Virginia, v. 1.8.00 (2005)

  • Journel A.G., Huijbregts C.J.: Mining Geostatistics. Academic Press, London (1978)

    Google Scholar 

  • Kazemi, H., Gilman, J.R.: Multiphase flow in fractured petroleum reservoirs. In: Bear, J., Tsang, C.-F., de Marsily, G. (eds.) Flow and Contaminant Transport in Fractured Rock, pp. 270–272. Academic Press, San Diego, CA (1993)

  • Kovács A., Sauter M.: Modelling karst hydrodynamics. In: Martin, J.B., White, W.B. (eds) Frontiers of Karst Research, pp. 13–26. Printed in the USA by BookMasters Inc., Ashland, OH (2008)

    Google Scholar 

  • Langevin C.D.: Stochastic ground water flow simulation with a fracture zone continuum model. GroundWater 41(5), 587–601 (2003)

    Article  Google Scholar 

  • Liu J., Zheng C., Zheng L., Lei Y.: Ground water sustainability: methodology and application to the North China plain. GroundWater 46(6), 897–909 (2008)

    Google Scholar 

  • Lu J., Guo Z., Chai Z., Shi B.: Numerical study on the tortuosity of porous media via lattice Boltzmann method. Commun. Comput. Phys. 6(2), 354–366 (2009)

    Article  Google Scholar 

  • Masciopinto C., La Mantia R., Chrysikopoulos C.V.: Fate and transport of pathogens in a fractured aquifer in the Salento area, Italy. Water Resour. Res. 44, W01404 (2008). doi:10.1029/2006WR005643

    Article  Google Scholar 

  • Masciopinto C., Volpe A., Palmiotta D., Cherubini C.: A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions. J. Contam. Hydrol. 117, 94–108 (2010)

    Article  Google Scholar 

  • Montes J.M., Cuevas F.G., Cintas J.: Electrical and thermal tortuosity in powder compacts. Granul. Matter 9, 401–406 (2007). doi:10.1007/s10035-007-0061-3

    Article  Google Scholar 

  • Moreno L., Tsang Y.W., Tsang C.F., Hale V., Neretnieks I.: Flow and tracer transport in a single fracture: a stochastic model and its relation to some field observations. Water Resour. Res. 24, 2033–2048 (1988)

    Article  Google Scholar 

  • Nordqvist W.A., Tsang Y.W., Tsang C.F., Dverstorp B., Andersson J.: Effects of high variance of fracture transmissivity on transport and sorption at different scales in a discrete model for fractured rocks. J. Contam. Hydrol. 22, 39–66 (1996)

    Article  Google Scholar 

  • Oron A.P., Berkowitz B.: Flow in rock fractures: the local cubic law assumption reexamined. Water Resour. Res. 34(11), 2811–2825 (1998). doi:10.1029/98WR02285

    Article  Google Scholar 

  • Park Y.-J., Lee K.-K., Berkowitz B.: Effects of junction transfer characteristics on transport in fracture networks. Water Resour. Res. 37(4), 909–923 (2001). doi:10.1029/2000WR900365

    Article  Google Scholar 

  • Ramaswamy S., Gupta M., Goel A., Aaltosalmi U., Kataja M., Koponen A., Ramarao B.V.: The 3D structure of fabric and its relationship to liquid and vapor transport. Colloid Surf. A: Physicochem. Eng. Asp. 241, 323–333 (2004)

    Article  Google Scholar 

  • Scanlon B.R., Mace R.E., Barrett M.E., Smith B.: Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J. Hydrol. 276, 137–158 (2003)

    Article  Google Scholar 

  • Schwartz F., Smith L., Crowe A.: A stochastic analysis of macroscopic dispersion in fractured media. Water Resour. Res. 19, 1253–1265 (1983)

    Article  Google Scholar 

  • Shafer J.M., Brantley D.T., Waddell M.G.: Variable-density flow and transport simulation of wellbore brine displacement. GroundWater 48(1), 122–130 (2010)

    Article  Google Scholar 

  • Tsang Y.W.: The effect of tortuosity on fluid flow through a single fracture. Water Resour. Res. 20(9), 1209–1215 (1984)

    Article  Google Scholar 

  • Tsang Y.W., Tsang C.F., Hale F.V., Dverstorp B.: Tracer transport in a stochastic continuum model of fractured media. Water Resour. Res. 32(10), 3077–3092 (1996)

    Article  Google Scholar 

  • Yun M., Yu B., Xu P., Wu J.: Geometrical models for tortuosity of streamlines in three-dimensional porous media. Can. J. Chem. Eng. 84, 301–309 (2006)

    Article  Google Scholar 

  • Zheng, C.: MT3DMS v. 5.3: Modular three-dimensional multispecies transport model for simulation in groundwaters Supplemental User’s Guide. Department of Geological Sciences, The University of Alabama Tuscaloosa, Alabama 35487, Technical Report, February (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Masciopinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masciopinto, C., Palmiotta, D. Flow and Transport in Fractured Aquifers: New Conceptual Models Based on Field Measurements. Transp Porous Med 96, 117–133 (2013). https://doi.org/10.1007/s11242-012-0077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0077-y

Keywords

Navigation