Skip to main content
Log in

Combining Simulation and Emulation for Calibrating Sequentially Reactive Transport Systems

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Reaction rates are usually identified at laboratory scale, by comparing measured concentrations with those of the corresponding mathematical models. However, laboratory-scale reaction rates may not necessarily reflect the reactive transport scenarios at the field scale. Thus, a major challenge for field-scale modeling is the determination of reaction kinetics and rates. The conventional inversion of reaction rates relies on optimization approaches that require expensive computation to obtain the gradient of objective functions. In this manuscript, we present a combined simulation–emulation approach for calibrating the first-order reaction rates at the field scale. A number of sample points are adaptively selected to represent the high-dimensional parametric space including dimensions of reaction rates. Correspondingly, reactive transport models are generated and executed for constructing response surfaces of objective functions. Taking the advantage of smooth response surfaces, optimization of reaction rates is efficiently performed. For several benchmark cases, the advantage of using global sensitivity analysis and uncertainty quantification of the objective functions in terms of uncertain reaction rates is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aziz, C.E., Newell, C.J., Gonzales, G.R., Haas, P.E., Clement, T.P., Sun, Y.: BIOCHLOR—Natural attenuation decision support system. Beta version 1.0, User Manual, Subsurface Protection and Remediation Division, National Risk Management Research Laboratory, Ada, OK (1999)

  • Bauer S., Beyer, C., Kolditz, O.: Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour. Res. 42, W01420. (2006). doi:10.1029/2004WR003878

  • Bear J.: Groundwater Hydraulics. McGraw-Hill, New York (1979)

    Google Scholar 

  • Bear J., Sun Y.: Optimization of pump-treat-inject (PTI) design for the remediation of a contaminated aquifers multi-stage design with chance-constraints. J. Contam. Hydrol. 29(3), 223–242 (1998)

    Article  Google Scholar 

  • Bear J., Cheng A.H.D.: Modeling Groundwater Flow and Contaminant Transport. Springer, Dordrecht (2010)

    Book  Google Scholar 

  • Buscheck T.E., Alcantar C.M.: Regression techniques and analytical solution to demonstrate intrinsic bioremediation. In: Hinchee, R.E. et al. (eds.) Intrinsic Bioremediation, pp. 109–116. Battelle Press, Columbus (1995)

  • Buscheck T.A., Glascoe L., Lee K.H., Gansemer J., Sun Y., Mansoor K.: Validation of the multiscale thermohydrological model used for analysis of a repository at Yucca Mountain. J. Contam. Hydrol. 62-63, 421–440 (2003)

    Article  Google Scholar 

  • Chappelle F.H., Bradley P.M., Lovley D.R., Vroblesky D.A.: Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods. Ground Water 34(4), 691–698 (1996)

    Article  Google Scholar 

  • Clement T.P., Sun Y., Hooker B.S., Petersen J.N.: Modeling multi-species reactive transport in groundwater aquifers. Groundwater Monit. Remediat. 18(2), 79–92 (1998)

    Article  Google Scholar 

  • Clement T.P., Johnson C.D., Sun Y., Klecka G.M., Bartlett C.: Natural attenuation chlorinated ethene compounds: model development and field-scale application at the Dover Site. J. Contam. Hydrol. 42(2–4), 113–140 (2000)

    Article  Google Scholar 

  • Dai Z., Samper J., Ritzi R.: Identifying geochemical processes by inverse modeling of multicomponent reactive transport in Aquia aquifer. Geosphere 2(4), 210–219 (2006). doi:10.1130/GES00021.1

    Article  Google Scholar 

  • Doherty J., Hunt R.J.: Two statistics for evaluating parameter identifiability and error reduction. J. Hydrol. 366(1–4), 119–127 (2009)

    Article  Google Scholar 

  • Doherty J.E.: Manual for PEST: Model Independent Parameter Estimation. Watermark Numerical Computing, Brisbane (2009)

    Google Scholar 

  • Doherty, J., Christensen, S.: Use of paired simple and complex models to reduce predictive bias and quantify uncertainty. Water Resour. Res. (2011). doi:10.1029/2011WR010763

  • Domenico P.A.: An analytical model for multidimensional transport of a decaying contaminant species. J. Hydrol. 91(1–2), 49–58 (1987)

    Article  Google Scholar 

  • Eldred, M.S., Giunta, A.A., van Bloemen Waanders, B.G., Wojtkiewicz Jr., S.F., Hart, W.E., Alleva, M.P.: DAKOTA, A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis, Version 3.0 developers manual. Sandia Laboratories, SAND2001-3514 (2002)

  • Engineous Software, Inc.: iSIGHT designer’s guide, Version 4.05. Engineous Software, Inc., Morrisville (1998)

  • Hao, Y., Sun, Y., Nitao, J.J.: Overview of NUFT—a versatile numerical model for simulating flow and reactive transport in porous media, Lawrence Livermore National Laboratory, LLNL-BOOK-42714-DRAFT (2010)

  • Hosseini A.H., Deutsch C.V., Mendoza C.A., Biggar K.W.: Inverse modeling for characterization of uncertainty in transport parameters under uncertainty of source geometry in heterogeneous aquifers. J. Hydrol. 405(3–4), 402–416 (2011)

    Article  Google Scholar 

  • Hsieh, H.: Application of the PSUADE tool for sensitivity analysis of an engineering simulation, Lawrence Livermore National Laboratory, UCRL-TR-237205 (2007)

  • Iman R.L., Helton J.C., Campbell J.E: An approach to sensitivity analysis of computer models, Part 1. Introduction, input variable selection and preliminary variable assessment. J. Qual. Technol. 13(3), 174–183 (1981)

    Google Scholar 

  • James S.C., Doherty J.E., Eddebbarh A.: Practical postcalibration uncertainty analysis: Yucca Mountain, Nevada. Ground Water 47(6), 851–869 (2009)

    Article  Google Scholar 

  • Major D.W., McMaster M.L., Cox E.E., Edward E.A., Dworatzek S.M., Hendrickson E.R., Satrr M.G., Payne J.A., Buonamici L.W.: Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ. Sci. Technol. 36, 5106–5116 (2002)

    Article  Google Scholar 

  • MathWorks: MATLAB high-performance numeric computation and visualization software. Mathworks, Natick. www.mathwroks.com (2000)

  • McKay M.D., Beckman R.J., Conover W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979). doi:10.2307/1268522

    Article  Google Scholar 

  • McNab W.W. Jr, Dooher B.P.: A critique of a steady-state analytical method for estimating contaminant degradation rates. Ground Water 36(6), 983–987 (1998)

    Article  Google Scholar 

  • Nitao, J.J.: User’s manual for the USNT module of the NUFT code, version 2 (NP-phase, NC-component, thermal), Lawrence Livermore National Laboratory, UCRL-MA-130653 (1998)

  • O’Hagan A.: Bayesian analysis of computer code outputs: a tutorial. Reliab. Eng. Sys. Safety 91(10), 1290–1300 (2006)

    Article  Google Scholar 

  • Petersen J.N., Sun Y.: An analytical solution evaluating steady-state plumes of sequentially reactive contaminants. Transp. Porous Med. 41(3), 287–303 (2000)

    Article  Google Scholar 

  • Poeter, E.P., Hill, M.C., Banta, E.R., Mehl, S., Christensen, S.: UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation, techniques and methods 6-a11. US Geol. Surv. (2005)

  • Powell, M.J.D:.The NEWUOA software for unconstrained minimization without derivatives. In: Di Pillo, G., Roma, M. Large-Scale Nonlinear Optimization, pp. 255–297. Springer, New York (2006)

  • Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Tech. Rep. NA2009/06, Department of Applied Mathematics and Theoretical Physics, University of Cambridge (2009)

  • Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., Tarantola S.: Global Sensitivity Analysis. The Primer. Wiley, Chichester (2008)

    Google Scholar 

  • Shukhman B.: Generation of quasi-random (LPτ) vectors for parallel computation. Comp. Phys. Commun. 78(3), 279–286 (1994)

    Article  Google Scholar 

  • Sobol’ I.: Sensitivity estimates for nonlinear mathematical models, in Russian. Matematicheskoe Modelirovanie 2, 112–118 (1990)

    Google Scholar 

  • Sobol’, I.: Sensitivity analysis for nonlinear mathematical models, Mathematical Modeling & Computational Experiment, vol. 1, pp. 407–414, (English translation from Russian original paper Sobol’, 1990) (1993)

  • Southwest Research Institute: NESSUS User’s Manual, Version 8. Southwest Research Institute, San Antonio (2004)

  • Sun Y., Petersen J.N., Clement T.P., Skeen R.S.: Development of analytical solutions for multi-species transport with serial and parallel reactions. Water Resour. Res. 35(1), 185–190 (1999)

    Article  Google Scholar 

  • Sun, Y., Demir, Z., Delorenzo, T., Nitao, J.J.: Application of the NUFT code for subsurface remediation by bioventing, Lawrence Livermore National Laboratory, UCRL-ID-137967 (2000)

  • Sun Y., Petersen J.N., Bear J.: Successive identification of biodegradation rates for multiple sequentially reactive contaminants in groundwater. J. Contam. Hydrol. 51(1–2), 83–95 (2001)

    Article  Google Scholar 

  • Sun Y., Buscheck T.A., Lee K.H., Hao Y., James S.C.: Modeling thermal-hydrologic processes for a heated fractured rock system: impact of a capillary-pressure maximum. Transp. Porous Med. 83(3), 501–523 (2010)

    Article  Google Scholar 

  • Tong, C.: PSUADE User’s Manual, Lawrence Livermore National Laboratory, LLNL-SM-407882 (2005)

  • van Genuchten M.Th.: Convective-dispersive transport of solutes involed in sequential first-order decay reactions. Comput. Geosci. 11(2), 129–147 (1985)

    Article  Google Scholar 

  • van Genuchten, M.Th., Alves, W.J.: Analytical solutions of the one dimensional convective dispersive solute transport equation. Techn. Bull. 1661, Agricultural Research Service, U.S. Department of Agriculture (1982)

  • Wexler, E.J.: Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, U.S. Geological Survey, Book 3, Ch. B7, p. 199 (1992)

  • Wiedemeier T.H., Swanson M.A., Wilson J.T., Kampbel D.H., Miller R.N., Hansen J.: Approximation of biodegradation rate constants for monoaromatic hydrocarbon (BTEX) in ground water. Groundwater Monit. Remediat. 16(3), 186–194 (1996)

    Article  Google Scholar 

  • Wiedemeier T.H., Rifai H.S., Wilson T.J., Newell C.: Natura Attenuation of Fuels and Chlorinated Solvents in the Subsurface. Wiley, Hoboken (1999)

    Book  Google Scholar 

  • Wilson J.L., Miller P.J.: Two-dimensional plume in uniform groundwater flow. J. Hydraul. Div. 104, 503–514 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Tong, C., Duan, Q. et al. Combining Simulation and Emulation for Calibrating Sequentially Reactive Transport Systems. Transp Porous Med 92, 509–526 (2012). https://doi.org/10.1007/s11242-011-9917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9917-4

Keywords

Navigation