Skip to main content
Log in

Experimental and Numerical Assessment of the Hydrodynamical Properties of Cementitious Materials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Durability of concrete structures is strongly conditioned by the occurrence of several chemical and physical phenomena that can be linked to the displacement of water in the constitutive material. Previous studies have already emphasized that in moderate temperature and pressure conditions, water transfers in weakly permeable cementitious material happen predominantly in the liquid phase, and can be modelled as a nonlinear diffusive process. The main goal of this study is to evaluate the intrinsic parameters involved in this diffusive process. For that purpose, a set of isothermal drying experiments are conducted on samples of different types, compositions and sizes. The classical Mualem expressions are fitted to the experimental sorption isotherms, and a numerical 1D model is used to fit the intrinsic permeability of the material. On the one hand, the values of the Mualem parameters we obtain show a significant sensitivity on the nature of the material and on the sample size. On the other hand, the Mualem expression, originally formulated for soils, does not fit perfectly experimental data, especially near saturation. A dual porosity formulation is proposed and allows a better representation of the material behaviour. Numerical simulations conducted with the Mualem tortuosity parameter L set to its usual value of 0.5 show a large underprediction of the value of the unsaturated permeability for low saturation values. It appears necessary to fit this parameter to values between –2.5 and –3 to obtain a good agreement with observed drying kinetics. This discrepancy must be linked to microcracks development in the sample which leads to larger apparent hydraulic conductivity at low saturation states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baroghel-Bouny V.: Water vapour sorption experiments on hardened cementitious materials. Part I: essential tool for analysis of hygral behaviour and its relation to pore structure. Cem. Conc. Res. 37(3), 438–454 (1951)

    Article  Google Scholar 

  • Baroghel-Bouny, V.: Caractérisation microstructurale et hydrique des pâtes de ciment et des bétons ordinaires et à très hautes performances. PhD Thesis. Ecole Nationale des Ponts et Chaussées. 409 p. (1994)

  • Barrett E.P., Joyner L.G., Halenda P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)

    Article  Google Scholar 

  • Benboudjema F., Meftah F., Torrenti J.-M: Structural effects of drying shrinkage. J. Eng. Mech. 131(11), 1195–1199 (2005)

    Article  Google Scholar 

  • Broadbridge P., White I.: Constant rate rainfall infiltration: a versatile nonlinear model. 1. Analytic solution. Water Resour. Res. 24(1), 145–154 (1988)

    Article  Google Scholar 

  • Brooks, R.H., Corey, A.J.: Hydraulic properties of porous media. Hydrology Paper 3, Colo. State University, Fort Collins, CO (1964)

  • Burdine K.T.: Relative permeability calculation from size distribution data. Trans. AIME 207, 71–78 (1953)

    Google Scholar 

  • Burlion N., Bourgeois F., Shao J.-F.: Effect of desiccation on mechanical behaviour of concrete. Cem. Concr. Compos. 27(3), 367–379 (2005)

    Article  Google Scholar 

  • Carlier J.-Ph., Kao C., Ginzburg I.: Field scale modeling of subsurface tile-drained soils using an equivalent-medium approach. J. Hydrol. 341(1–2), 105–115 (2007)

    Article  Google Scholar 

  • Chen D., Yurtdas I., Burlion N., Shao J.F.: Elastoplastic damage behavior of a mortar subjected to compression and desiccation. J. Eng. Mech. 133(4), 464–472 (2007)

    Article  Google Scholar 

  • Coussy O., Eymard R., et Lassabatère T.: Constitutive modelling of unsaturated drying deformable material. J. Eng. Mech. 124(6), 658–667 (1998)

    Article  Google Scholar 

  • de Sa C., Benboudjema F., Thiery M., Sicard J.: Analysis of microcracking induced by differential drying shrinkage. Cem. Concr. Compos. 30(10), 947–956 (2008)

    Article  Google Scholar 

  • Durner W.: Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 32(9), 211–223 (1994)

    Article  Google Scholar 

  • Fuentes C., Haverkamp R., Parlange J.-Y., Brutsaert W., Zayani K., Vachaud G.: Constraints on parameters in three soil–water capillary retention equations. Transp. Porous Media. 6(4), 445–449 (1991)

    Article  Google Scholar 

  • Khelidj A., Choinska M., Chatzigeorgiou G., Pijaudier-Cabot G.: Coupling between progressive damage, temperature and permeability of concrete: experimental and numerical study. Int. J. Restor. Build. Monum. 12(4), 299–316 (2006)

    Google Scholar 

  • Leech C., Lockington D., Dux P.: Unsaturated diffusivity functions for concrete derived from NMR images. Mater. Struct./Materiaux et Constructions. 36(260), 413–418 (2003)

    Google Scholar 

  • Leech C., Lockington D., Doug Hooton R., Galloway G., Cowin G., Dux P.: Validation of Mualem’s conductivity model and prediction of saturated permeability from sorptivity. ACI Mater. J. 105(1), 44–51 (2008)

    Google Scholar 

  • Lehmann F., Ackerer P.: Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media. Transp. Porous Media. 31(3), 275–292 (1998)

    Article  Google Scholar 

  • Lockington D., Parlange J.-Y., Dux P.: Sorptivity and the estimation of water penetration into unsaturated concrete. Mater. Struct. 32(219), 342–347 (1999)

    Article  Google Scholar 

  • Mainguy M., Coussy O., Baroghel-Bouny V.: Role of air pressure in drying of weakly permeable materials. J. Eng. Mech. 127(6), 582–592 (2001)

    Article  Google Scholar 

  • Mualem Y.: New model for predicting hydraulic conductivity of unsaturated porous-media. Water Resour. Res. 12(3), 513–522 (1976)

    Article  Google Scholar 

  • Neville, A.M.: Properties of Concrete. 4th edition, Longman Group, (1995)

  • Promentilla M.A.B., Sugiyama T., Hitomi T., Takeda N.: Quantification of tortuosity in hardened cement pastes using synchrotron-based X-ray computed microtomography. Cem. Concr. Res. 39(6), 548–557 (2009)

    Article  Google Scholar 

  • Richards L.A.: Capillary conduction of liquids through porous media. Physics. 1, 318–333 (1931)

    Article  Google Scholar 

  • Rougelot T., Skoczylas F., Burlion N.: Water desorption and shrinkage in mortars and cement pastes: experimental study and poromechanical model. Cem. Concr. Res. 39(1), 36–44 (2009)

    Article  Google Scholar 

  • Savage B.M., Janssen D.J.: Soil physics principles validated for use in predicting unsaturated moisture movement in portland cement concrete. ACI Mater. J. 94(1), 63–70 (1997)

    Google Scholar 

  • Schaap M.G., Leij F.J.: Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model. Soil Sci. Soc. Am. J. 64(3), 843–851 (2000)

    Article  Google Scholar 

  • Schuh W.M., Cline R.L.: Effect of soil properties on unsaturated hydraulic conductivity pore-interaction factors. Soil Sci. Soc. Am. J. 54(6), 1509–1519 (1990)

    Article  Google Scholar 

  • Shao J.-F., Jia Y., Kondo D., Chiarelli A.-S.: A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mech. Mater. 38(3), 218–232 (2006)

    Article  Google Scholar 

  • Van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Van Genuchten M.T., Leij F.J., Yates S.R.: The RETC code for quantifying the hydraulic functions of unsaturated soils, version 1.0. EPA Report 600/2-91/065, U.S. Salinity Laboratory, USDA, ARS, Riverside, California (1991).

  • Yates S.R., Van Genuchten M.T., Warrick A.W., Leij F.J.: Analysis of measured, predicted, and estimated hydraulic conductivity using the RETC computer program. Soil Sci. Soc. Am. J. 56(2), 347–354 (1992)

    Article  Google Scholar 

  • Yurtdas I., Peng H., Burlion N., Skoczylas F.: Influences of water by cement ratio on mechanical properties of mortars submitted to drying. Cem. Concr. Res. 36(7), 1286–1293 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-Ph. Carlier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlier, JP., Burlion, N. Experimental and Numerical Assessment of the Hydrodynamical Properties of Cementitious Materials. Transp Porous Med 86, 87–102 (2011). https://doi.org/10.1007/s11242-010-9607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9607-7

Keywords

Navigation