Skip to main content
Log in

Controlling Chaos in Porous Media Convection by Using Feedback Control

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A method of using feedback control to promote or suppress the transition to chaos in porous media convection is demonstrated in this article. A feedback control suggested by Mahmud and Hashim (Transp Porous Media, doi:10.1007/s11242-009-9511-1, 2010) is used in the present article to provide a comparison between an analytical expression for the transition point to chaos and numerical results. In addition, it is shown that such a feedback control can be applied as an excellent practical means for controlling (suppressing or promoting) chaos by using a transformation made by Magyari (Transp Porous Media, doi:10.1007/s11242-009-9511-1, 2010). The latter shows that Mahmud and Hashim (Transp Porous Media, doi:10.1007/s11242-009-9511-1, 2010) model can be transformed into Vadasz-Olek’s model (Transp Porous Media 37(1):69–91, 1999a) through a simple transformation of variables implying that the main effect the feedback control has on the solution is equivalent to altering the initial conditions. The theoretical and practical significance of such an equivalent alteration of the initial conditions is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bau H.H.: Control of Marangoni-Benard convection. Int. J. Heat Mass Transf. 42, 1327–1341 (1999)

    Article  Google Scholar 

  • IMSL library: Fortran subroutines for mathematical applications, Version 2. IMSL library, Houston (1991)

  • Lorenz E.N.: Deterministic non-periodic flows. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  • Magyari, E.: The “Butterfly Effect” in a Porous Slab. Transp. Porous Media. doi:10.1007/s11242-010-9536-5 (2010, in press)

  • Mahmud, M. N., Hashim, I.: Small and moderate Prandtl number chaotic convection in porous media in the presence of feedback control. Transp. Porous Media. doi:10.1007/s11242-009-9511-1 (2010)

  • Sheu L.-J.: An autonomous system for chaotic convection in a porous medium using a thermal non-equilibrium model. Chaos Solitons Fractals 30(3), 672–689 (2006)

    Article  Google Scholar 

  • Sparrow C.: The Lorenz Equations: bifurcations, chaos, and strange attractors. Springer-Verlag, New York (1982)

    Google Scholar 

  • Straughan B.: A sharp nonlinear stability threshold in rotating porous convection. Proc. Royal Soc. London A 457(2005), 87–93 (2001)

    Article  Google Scholar 

  • Straughan, B.: Stability and Wave Motion in Porous Media (Applied Mathematical Sciences Series). Springer, Berlin. ISBN: 0387765417 (2008)

  • Tang J., Bau H.H.: Feedback control stabilization of the no motion state of a fluid confined in a horizontal porous layer heated from below. J. Fluid Mech. 257, 485–505 (1993)

    Article  Google Scholar 

  • Vadasz P.: Coriolis effect on gravity driven convection in a rotating porous layer heated from below. J. Fluid Mech. 376, 351–375 (1998)

    Article  Google Scholar 

  • Vadasz P.: Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transp. Porous Media 37(2), 213–245 (1999a)

    Article  Google Scholar 

  • Vadasz P.: A note and discussion on J.-L. Auriault’s letter: comments on the paper—local and global transitions to chaos and hysteresis in a porous layer heated from below. Transp. Porous Media 37(2), 251–254 (1999b)

    Article  Google Scholar 

  • Vadasz P.: Subcritical transitions to chaos and hysteresis in a fluid layer heated from below. Int. J. Heat Mass Transf. 43(5), 705–724 (2000)

    Article  Google Scholar 

  • Vadasz P.: Heat transfer regimes and hysteresis in porous media convection. ASME J. Heat Transf. 123, 145–156 (2001a)

    Article  Google Scholar 

  • Vadasz P.: The effect of thermal expansion on porous media convection—Part 1: thermal expansion solution. Transp. Porous Media 44(3), 421–443 (2001b)

    Article  Google Scholar 

  • Vadasz P.: The effect of thermal expansion on porous media convection—Part 2: thermal convection solution. Transp. Porous Media 44(3), 445–463 (2001c)

    Article  Google Scholar 

  • Vadasz P.: Equivalent initial conditions for compatibility between analytical and computational solutions of convection in porous media. Int. J. Non Linear Mech. 36(2), 197–208 (2001d)

    Article  Google Scholar 

  • Vadasz P.: Hysteresis and chaos in porous media convection. Trends Heat Mass Momentum Transf. Res. Trends 8, 59–102 (2002)

    Google Scholar 

  • Vadasz P.: Chaotic dynamics and hysteresis in thermal convection. Proc. IMechE (Part C) J. Mech. Eng. Sci. 220(C3), 309–323 (2006)

    Article  Google Scholar 

  • Vadasz, P.: Analytical prediction of the transition to chaos in Lorenz Equations. Appl. Math. Lett. doi:10.1016/j.aml.2009.12.012 (2010, in press)

  • Vadasz P., Olek S.: Transitions and chaos for free convection in a rotating porous layer. Int. J. Heat Mass Transf. 41(11), 1417–1435 (1998)

    Article  Google Scholar 

  • Vadasz P., Olek S.: Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media. Transp. Porous Media 37(1), 69–91 (1999a)

    Article  Google Scholar 

  • Vadasz P., Olek S.: Computational recovery of the homoclinic orbit in porous media convection. Int. J. Non Linear Mech. 34(6), 89–93 (1999b)

    Article  Google Scholar 

  • Vadasz P., Olek S.: Route to chaos for moderate Prandtl number convection in a porous layer heated from below. Transp. Porous Media 41(2), 211–239 (2000a)

    Article  Google Scholar 

  • Vadasz P., Olek S.: Convergence and accuracy of Adomian’s decomposition method for the solution of Lorenz Equations. Int. J. Heat Mass Transf. 43(10), 1715–1734 (2000b)

    Article  Google Scholar 

  • Wang Y., Singer J., Bau H.H.: Controlling chaos in a thermal convection loop. J. Fluid Mech. 237, 479–498 (1992)

    Article  Google Scholar 

  • Yuen P., Bau H.H.: Rendering a subcritical Hopf bifurcation supercritical. J. Fluid Mech. 317, 91–109 (1996)

    Article  Google Scholar 

  • Zhao H., Bau H.H.: Limitations of linear control of thermal convection in a porous medium. Phys. Fluids 18, 074109 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vadasz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadasz, P. Controlling Chaos in Porous Media Convection by Using Feedback Control. Transp Porous Med 85, 287–298 (2010). https://doi.org/10.1007/s11242-010-9562-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9562-3

Keywords

Navigation