Skip to main content
Log in

A Variational Model of Disjoining Pressure: Liquid Film on a Nonplanar Surface

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Variational methods have been successfully used in modelling thin liquid films in numerous theoretical studies of wettability. In this article, the variational model of the disjoining pressure is extended to the general case of a two-dimensional solid surface. The Helmholtz free energy functional depends both on the disjoining pressure isotherm and on the shape of the solid surface. The augmented Young–Laplace equation (AYLE) is a nonlinear second-order partial differential equation. A number of solutions describing wetting films on spherical grains have been obtained. In the case of cylindrical films, the phase portrait technique describes the entire variety of mathematically feasible solutions. It turns out that a periodic solution, which would describe wave-like wetting films, does not satisfy Jacobi’s condition of the classical calculus of variations. Therefore, such a solution is nonphysical. The roughness of the solid surface significantly affects liquid film stability. AYLE solutions suggest that film rupture is more likely at a location where the pore-wall surface is most exposed into the pore space, and the curvature is positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austad T., Matre B., Milter J., Svareid A., yno L.: Chemical flooding of oil reservoirs. 8. Spontaneous oil expulsion from oil- and water-wet low permeable chalk material by imbibition of aqueous surfactant solutions. Colloids Surf. A Physicochem. Eng. Asp. 137, 117–129 (1998)

    Article  Google Scholar 

  • Basu S., Sharma M.M.: Measurement of critical disjoining pressure for dewetting of solid surfaces. J. Colloid Interface Sci. 181, 443–455 (1996)

    Article  Google Scholar 

  • Blunt M.J.: Flow in porous media—pore-network models and multiphase flow. Curr. Opin. Colloid Interface sci. 6(3), 197–207 (2001)

    Article  Google Scholar 

  • Blunt M.J., King P.: Relative permeabilities from two- and three-dimensional pore-scale metwork modeling. Transp. Porous Media 6, 407–433 (1991)

    Article  Google Scholar 

  • Brochard-Wyart F., di Meglio J.-M., Qur D., de Gennes P.-G.: Spreading of nonvolatile liquids in a continuum picture. Langmuir 7, 335–338 (1991)

    Article  Google Scholar 

  • Churaev N.V.: On the forces of hydrophobic attraction in wetting films of aqueous solutions. Colloid Surf. A Physicochem. Eng. Asp. 79, 25–31 (1993)

    Article  Google Scholar 

  • Churaev N.V., Starov V.M., Derjaguin B.V.: The shape of the transition zone between a thin film and bulk liquid and the line tension. J. Colloid Interface Sci. 89(1), 16–24 (1982)

    Article  Google Scholar 

  • Derjagin B.V.: Theory of capillary condensation and related capillary effects. Zhur. Fiz. Khim. (J. Phys. Chem.) 14(2), 137–147 (1940)

    Google Scholar 

  • Derjagin B.V., Churaev N.V., Muller V.M.: Surface Forces. Plenum Press, New York (1987)

    Google Scholar 

  • Frumkin A.N.: On the wetting phenomena and attachment of bubbles. Zhur. Fiz. Khim. (J. Phys. Chem.) 12(4), 337–345 (1938)

    Google Scholar 

  • Gelfand I.M., Fomin S.V.: Calculus of Variations. Prentice Hall, London (1963)

    Google Scholar 

  • Goursat E.: Cours d’analyse mathématique. Gauthier-Villars, Paris (1918)

    Google Scholar 

  • Hiorth, A., Virnovsky, G.A.: Description of oil–water interface in porous rocks honouring intermolecular interactions, Tech. Report 7001012, RF—Rogaland Reserach, Stavanger, Norway (2005)

  • Hirasaki G.J.: Wettability: fundamentals and surface forces. SPE Form. Eval. 6, 217–226 (1991)

    Google Scholar 

  • Israelachvili J.N.: Intermolecular and Surface Forces. 2nd edn. Academic Press, New York, NY (1992)

    Google Scholar 

  • Kagan M., Pinczewki W.V.: Meniscus in a narrow slit. J. Colloid Interface Sci. 180, 293–295 (1996)

    Article  Google Scholar 

  • Kagan M., Pinczewki W.V.: Meniscus and contact angle in an eye-shaped capillary. J. Colloid Interface Sci. 203, 379–382 (1998)

    Article  Google Scholar 

  • Kagan M., Pinczewki W.V.: Menisci in a wedge and a slit for incomplete wetting conditions. J. Colloid Interface Sci. 215, 196–199 (1999)

    Article  Google Scholar 

  • Kagan M., Pinczewki W.V.: Menisci in a diamond-shaped capillary. J. Colloid Interface Sci. 230, 452–454 (2000)

    Article  Google Scholar 

  • Kagan M., Pinczewki W.V., Oren P.-E.: Two-dimensional meniscus in a wedge. J. Colloid Interface Sci. 170, 426–431 (1995)

    Article  Google Scholar 

  • Kovscek A.R., Wong H., Radke C.J.: A pore-level scenario for the development of mixed wettability in oil reservoirs. AIChE J. 39(6), 1072–1085 (1993)

    Article  Google Scholar 

  • Mikhlin S.G.: Variational Methods in Mathematical Physics. Academtc Press, New York (1964)

    Google Scholar 

  • Morrow N.R., Lim H.T., Ward J.S.: Effect of crude-oil-induced wettability changes on oil recovery. SPE Form.Eval. 1, 89–95 (1986)

    Google Scholar 

  • Patzek T.W.: Verification of a complete pore network simulator of drainage and imbibition. SPE J. 6(2), 144–156 (2001)

    Google Scholar 

  • Pomeau, Y., Villermaux, E.: Two hundred years of capillary research. Phys. Today, 39–44 (2006)

  • Pontryagin L.S.: Ordinary Differential Equations. Addison-Wesley, Reading, MA (1962)

    Google Scholar 

  • Schembre J.M., Tang G.-Q., Kovscek A.R.: Wettability alteration and oil recovery by water imbibition at elevated temperatures. J. Pet. Sci. Eng. 52, 131–148 (2006)

    Article  Google Scholar 

  • Skauge, A., Spildo, K., Hiland, L., Vik, B., Ottesen, B.: Experimental evidence of different intermediate wetting states. Symposium of the Society of Core Analysts (Abu Dhabi, UAE), SCA (2004)

  • Starov V.M.: Equilibrium and hysteresis contact angles. Adv. Colloid Interface Sci. 39, 147–173 (1992)

    Article  Google Scholar 

  • Starov V.M.: Nonflat equilibrium liquid shapes on flat surfaces. J. Colloid Interface Sci. 269, 432–441 (2004)

    Article  Google Scholar 

  • Thorpe J.A.: Elementary Topics in Differential Geometry. Springer, New York (1979)

    Google Scholar 

  • Tyrrell James W.G., Attard Phil: Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 87(17), 176104-1–176104-4 (2001)

    Google Scholar 

  • Weinstock, R., Calculus of Variations—with Applications to Physics and Engineering, McGrow-Hill (1952)

  • Yeh E.K., Newman J., Radke C.J.: Equilibrium configurations of liquid droplets on solid surfaces under the influence of thin-film forces. Part I. Thermodynamics. Colloids Surf.APhysicochem.Eng. Asp. 156, 137–144 (1999a)

    Article  Google Scholar 

  • Yeh E.K., Newman J., Radke C.J.: Equilibrium configurations of liquid droplets on solid surfaces under the influence of thin-film forces. Part II. Shape calculations. Colloids Surf. A Physicochem. Eng. Asp. 156, 525–546 (1999b)

    Article  Google Scholar 

  • Zhang X., Neogi P.: Stable drop shapes under disjoining pressure: II. Multiplicity and stability. J. Colloid Interface Sci. 249, 141–146 (2002)

    Article  Google Scholar 

  • Zhang X., Neogi P., Ybarra R.M.: Stable drop shapes under disjoining pressure: I. A hierarchical approach and application. J. Colloid Interface Sci. 249, 134–140 (2002)

    Article  Google Scholar 

  • Zhang, P., Tweheyo, M.T., Austad, T.: Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: impact of the potential determining ions Ca2+, Mg2+, and SO\({_4^{2-}}\). Colloids Surf. A Physicochem. Eng. Asp. (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Silin.

Additional information

The final version of this work has been prepared by the first author after Dr. Virnovsky’s sudden death on the 12th of March 2008, while visiting Lawrence Berkeley National Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silin, D., Virnovsky, G. A Variational Model of Disjoining Pressure: Liquid Film on a Nonplanar Surface. Transp Porous Med 82, 485–505 (2010). https://doi.org/10.1007/s11242-009-9424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9424-z

Keywords

Navigation