Skip to main content
Log in

Condition for Break-up of Non-Wetting Fluids in Sinusoidally Constricted Capillary Channels

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Analysis of capillary-pressure distribution in single channels with sinusoidal profile shows that surface tension-driven flow in such channels is controlled by the pressure extrema at their “crests” and “troughs”. Formulating the geometric condition for the pressure in the troughs to exceed that in the crests leads to a simple criterion for the spontaneous break-up of the non-wetting fluid in the necks of the constrictions. The criterion reduces to the condition for the Plateau-Rayleigh instability as a limiting case. Similar pressure analysis is applicable to the case of a non-wetting fluid invading an open pore body. Computational-fluid-dynamics experiments have verified the validity of the break-up predicted from the capillary-pressure argument. Although the geometric criterion for the break-up is valid for small capillary numbers, it provides a common framework in which the results of various published studies of a non-wetting phase choke-off in capillary constrictions for a wide range of capillary numbers can be explained and understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atherton R.W., Homsy G.M.: On the derivation of evolution equations for interfacial waves. Chem. Eng. Commun. 2, 57–77 (1976). doi:10.1080/00986447608960448

    Article  Google Scholar 

  • Beresnev I.A.: Theory of vibratory mobilization of nonwetting fluids entrapped in pore constrictions. Geophysics 71, N47–N56 (2006)

    Article  Google Scholar 

  • Bretherton F.P.: The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188 (1961). doi:10.1017/S0022112061000160

    Article  Google Scholar 

  • De Gennes P.-G., Brochard-Wyart F., Quéré D.: Capillarity and Wetting Phenomena. Springer, Heidelberg (2004)

    Google Scholar 

  • Gauglitz P.A., Radke C.J.: An extended evolution equation for liquid film breakup in cylindrical capillaries. Chem. Eng. Sci. 43, 1457–1465 (1988). doi:10.1016/0009-2509(88)85137-6

    Article  Google Scholar 

  • Gauglitz P.A., Radke C.J.: The dynamics of liquid film breakup in constricted cylindrical capillaries. J. Colloid Interface Sci. 134, 14–40 (1990). doi:10.1016/0021-9797(90)90248-M

    Article  Google Scholar 

  • Graustein W.C.: Differential Geometry. Dover, New York (2006)

    Google Scholar 

  • Hammond P.S.: Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe. J. Fluid Mech. 137, 363–384 (1983). doi:10.1017/S0022112083002451

    Article  Google Scholar 

  • Hemmat M., Borhan A.: Buoyancy-driven motion of drops and bubbles in a periodically constricted capillary. Chem. Eng. Commun. 148-150, 363–384 (1996). doi:10.1080/00986449608936525

    Article  Google Scholar 

  • Korn G.A., Korn T.K.: Mathematical Handbook for Scientists and Engineers, 2nd edn. McGraw-Hill, New York (1968)

    Google Scholar 

  • Kovscek A.R., Tang G.-Q., Radke C.J.: Verification of Roof snap off as a foam-generation mechanism in porous media at steady state. Colloids Surf. A Physicochem. Eng. Asp. 302, 251–260 (2007). doi:10.1016/j.colsurfa.2007.02.035

    Article  Google Scholar 

  • Lamb H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  • Martinez M.J., Udell K.S.: Axisymmetric creeping motion of drops through a periodically constricted tube. In: Wang, T.G. (eds) Drops and Bubbles, AIP Conference Proceedings 197, pp. 222–234. American Institute of Physics, New York (1989)

    Google Scholar 

  • Melrose, J.C., Brandner, C.F.: Role of capillary forces in determining microscopic displacement efficiency for oil recovery by waterflooding. J. Can. Pet. Technol. October–December, 54–62 (1974)

  • Middleman S.: Modeling Axisymmetric Flows. Academic Press, New York (1995)

    Google Scholar 

  • Olbricht W.L., Leal L.G.: The creeping motion of immiscible drops through a converging/diverging tube. J. Fluid Mech. 134, 329–355 (1983). doi:10.1017/S0022112083003390

    Article  Google Scholar 

  • Roof J.G.: Snap-off of oil droplets in water-wet pores. Soc. Pet. Eng. J. 10, 85–90 (1970). doi:10.2118/2504-PA

    Google Scholar 

  • Rossen W.R.: A critical review of Roof snap-off as a mechanism of steady-state foam generation in homogeneous porous media. Colloids Surf. A Physicochem. Eng. Asp. 225, 1–24 (2003). doi:10.1016/S0927-7757(03)00309-1

    Article  Google Scholar 

  • Tsai T.M., Miksis M.J.: Dynamics of a drop in a constricted capillary tube. J. Fluid Mech. 274, 197–217 (1994). doi:10.1017/S0022112094002090

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Beresnev.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (MPG 25.9MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beresnev, I.A., Li, W. & Vigil, R.D. Condition for Break-up of Non-Wetting Fluids in Sinusoidally Constricted Capillary Channels. Transp Porous Med 80, 581–604 (2009). https://doi.org/10.1007/s11242-009-9381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9381-6

Keywords

Navigation