Skip to main content
Log in

Unsteady Natural Convection Flow in a Square Cavity Filled with a Porous Medium Due to Impulsive Change in Wall Temperature

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Unsteady natural convection flow in a two-dimensional square cavity filled with a porous material has been studied. The flow is initially steady where the left-hand vertical wall has temperature T h and the right-hand vertical wall is maintained at temperature T c (T h > T c) and the horizontal walls are insulated. At time t > 0, the left-hand vertical wall temperature is suddenly raised to \({{\bar{T}}_{\rm h}\,({\bar{T}}_{\rm h} > T_{\rm h})}\) which introduces unsteadiness in the flow field. The partial differential equations governing the unsteady natural convection flow have been solved numerically using a finite control volume method. The computation has been carried out until the final steady state is reached. It is found that the average Nusselt number attains a minimum during the transient period and that the time required to reach the final steady state is longer for low Rayleigh number and shorter for high Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

Specific heat at constant pressure (J kg−1 K−1)

g :

Acceleration due to gravity (m s−2)

K :

Permeability of the porous medium (m2)

k :

Thermal conductivity (W m−1 K−1)

L :

Height/length of the cavity (m)

Nu :

Local Nusselt number

\({\overline{Nu}}\) :

Average Nusselt number

Ra :

Rayleigh number

t :

Time (s)

t * :

Dimensionless time

T :

Fluid temperature (K)

T h :

Temperature of the left-hand vertical wall at t = 0 (K)

\({\bar{T}_{\rm h}}\) :

Temperature of the left-hand vertical wall at t > 0 (K)

T c :

Temperature of the right-hand vertical wall at t≥ 0 (K)

T 0 :

Average temperature at t = 0 (K)

u, v:

Velocity components along x and y directions, respectively (m s−1)

U, V:

Dimensionless velocity components along x and y directions, respectively

x, y:

Cartesian coordinates (m)

X, Y:

Dimensionless Cartesian coordinates

α e :

Effective thermal diffusivity (m2 s−1)

β :

Coefficient of thermal expansion (K−1)

\({\epsilon}\) :

Dimensionless constant

θ :

Dimensionless temperature

υ :

Kinematic viscosity (m2 s−1)

ρf, ρm:

Density of the fluid and porous medium, respectively (kg m−3)

σ :

Ratio of composite material heat capacity to convective fluid heat capacity

ψ :

Dimensionless stream function

ψ * :

Stream function (m2 s−1)

f:

Fluid

i:

Initial condition

m:

Porous medium

References

  • Aldabbagh L.B.Y., Manesh H.F., Mohamad A.A.: Unsteady natural convection inside a porous enclosure heated from the side. J. Porous Media. 11, 73–83 (2007)

    Article  Google Scholar 

  • Banu, N., Rees, D.A., Pop, I.: Steady and unsteady free convection in porous cavities with internal heat generation. In: Heat Transfer 1998, Proceedings of 11th IHTC, vol. 4, pp. 375–380, Kyongju (1998)

  • Baytas A.C., Pop I.: Free convection in a square porous cavity using a thermal nonequilibrium model. Int. J. Therm. Sci. 41, 861–870 (2002)

    Article  Google Scholar 

  • Bejan A.: On the boundary layer regime in a vertical enclosure filled with a porous medium. Lett. Heat Mass Transf. 6, 93–102 (1979)

    Article  Google Scholar 

  • Bejan, A., Kraus, A.D. (eds.): Heat Transfer Handbook. Wiley, New York (2003)

    Google Scholar 

  • Gross, R.J., Bear, M.R., Hickox, C.E.: The application of flux-corrected transport (FCT) on high Rayleigh number natural convection in a porous medium. In: Proceedings of the 8th International Heat Transfer Conference, San Francisco (1986)

  • Ingham, D.B., Pop, I. (eds): Transport Phenomena in Porous Media, vol III. Pergamon, Oxford (2005)

    Google Scholar 

  • Khashan S.A., Al-Amiri A.M., Pop I.: Numerical simulation of natural convection heat transfer in a porous cavity heated from below using a non-Darcian and thermal non-equilibrium model. Int. J. Heat Mass Transf. 49, 1039–1049 (2006)

    Article  Google Scholar 

  • Kumar B.V.R., Singh P., Murthy P.V.S.N.: Effect of surface undulations on natural convection in a porous square cavity. ASME J. Heat Transf. 119, 848–851 (1997)

    Article  Google Scholar 

  • Manole, D.M., Lage, J.L.: Numerical benchmark results for natural convection in a porous medium cavity. In: HTD—vol. 216, Heat and Mass Transfer in Porous Media, ASME Conference, pp. 55–60 (1992)

  • Misirlioglu A., Baytas A.C., Pop I.: Free convection in a wavy cavity filled with a porous medium. Int. J. Heat Mass Transf. 48, 1840–1850 (2005)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Patankar S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, Washington (1980)

    Google Scholar 

  • Prasad V., Kulacki F.A.: Convective heat transfer in a rectangular porous cavity—effect of aspect ratio on flow structure and heat transfer. ASME J. Heat Transf. 106, 158–165 (1984)

    Article  Google Scholar 

  • Pop I., Ingham D.B.: Convective Heat Transfer, Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Pergamon Press, Oxford (2001)

    Google Scholar 

  • Saeid N.H.: Natural convection in porous cavity with sinusoidal bottom wall temperature variation. Int. Commun. Heat Mass Transf. 32, 454–463 (2005)

    Article  Google Scholar 

  • Saeid N.H., Pop I.: Transient free convection in a porous cavity filled with a porous medium. Int. J. Heat Mass Transf. 47, 1917–1924 (2004)

    Article  Google Scholar 

  • Vafai, K. (eds): Handbook of Porous Media, 2nd edn. Taylor and Francis, Boca Raton (2005)

    Google Scholar 

  • Walker, K.L., Homsy, G.M.: Convection in a porous cavity. J. Fluid Mech. 87, 449–474 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kumari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, M., Nath, G. Unsteady Natural Convection Flow in a Square Cavity Filled with a Porous Medium Due to Impulsive Change in Wall Temperature. Transp Porous Med 77, 463–474 (2009). https://doi.org/10.1007/s11242-008-9285-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-008-9285-x

Keywords

Navigation