Skip to main content
Log in

Numerical Study of Natural Convection Heat Transfer in an Inclined Porous Cavity with Time-Periodic Boundary Conditions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Kalabin et al. (Numer. Heat Transfer A 47, 621-631, 2005) studied the unsteady natural convection for the sinusoidal oscillating wall temperature on one side wall and constant average temperature on the opposing side wall. The present article is on the unsteady natural convective heat transfer in an inclined porous cavity with similar temperature boundary conditions as those of Kalabin et al. The inclined angle \({\varphi}\) of the cavity is varied from 0° to 80°. The flow field is modeled with the Brinkman-extended Darcy model. The combined effects of inclination angle of the enclosure and oscillation frequency of wall temperature are studied for Ra* = 103, Da = 10−3, \({\varepsilon =0.6}\) , and Pr=1. Some results are also obtained with the Darcy–Brinkman–Forchheimer model and Darcy’s law and are compared with the present Brinkman-extended Darcy model. The maximal heat transfer rate is attained at the oscillating frequency f = 46.7π and the inclined angle \({\varphi = 42.2^{\circ}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Specific heat

c a :

Acceleration coefficient of the porous medium

Da :

Darcy number

f :

Dimensionless oscillating frequency

F :

Inertia coefficient

H :

Height of cavity

k :

Thermal conductivity

K :

Permeability

Nu av :

Time-averaged Nusselt number in one period

Nu R :

Average Nusselt number at right wall

P :

Dimensionless pressure

p :

Pressure

Pr :

Prandtl number

\({\rm {R^{\ast}_a}}\) :

Rayleigh–Darcy number

t :

Time

T :

Temperature

u, v :

Velocity components along x- and y-axes, respectively

v :

Velocity vector

U, V :

Dimensionless velocity components along X- and Y-axes, respectively

|V|:

Magnitude of velocity vector

x, y :

Cartesian coordinates

X, Y :

Dimensionless Cartesian coordinates

αf :

Thermal diffusivity

αm :

Modified thermal diffusivity of the porous medium

\({\varepsilon}\) :

Porosity

θ :

Dimensionless temperature

μ :

Viscosity

ν f :

Fluid kinematic viscosity

ρ :

Density

τ :

Dimensionless time

τ p :

Dimensionless period of oscillation

σ :

Specific heat ratio

ω :

Oscillating frequency

\({\varphi}\) :

Inclined angle of the cavity

f:

Fluid

m:

Fluid-saturated porous medium

References

  • Antohe, B.V., Lage, J.L.: A dynamic thermal insulator: inducing resonance within a fluid saturated porous medium enclosure heated periodically from the side. Int. J. Heat Mass Transfer 37, 771–782 (1994)

    Article  Google Scholar 

  • Antohe, B.V., Lage, J.L.: Amplitude effects on convection induced by time-periodic horizontal heating. Int. J. Heat Mass Transfer 38, 1121–1133 (1996)

    Article  Google Scholar 

  • Antohe, B.V., Lage, J.L.: The Prandtl number effect on the optimum heating frequency of an enclosure filled with fluid or with a saturated porous medium. Int. J. Heat Mass Transfer 40, 1313–1323 (1997)

    Article  Google Scholar 

  • Chhuon, B., Caltagirone, J.P.: Stability of a horizontal porous layer with timewise periodic boundary conditions. ASME J. Heat Transfer 98, 49–54 (1976)

    Google Scholar 

  • Chung, K.H., Kwak, H.S., Hyun, J.M.: Finite-wall effect on buoyant convection in an enclosure with pulsating exterior surface temperature. Int. J. Heat Mass Transfer 44, 721–732 (2001)

    Article  Google Scholar 

  • Davis, S.H.: Convection in a box: linear theory. J. Fluid Mech. 30, 465–478 (1967)

    Article  Google Scholar 

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)

    Google Scholar 

  • Hart, J.E.: Stability of flow in a differentially heated inclined box. J. Fluid Mech. 47, 547–576 (1971)

    Article  Google Scholar 

  • Hayase, T., Humphrey, J.A.C., Greif, R.: A consistently formulated QUICK scheme for fast and stable convergence using finite-volume calculation procedures. J. Comput. Phys. 98, 108–118 (1992)

    Article  Google Scholar 

  • Hollands, K.G.T., Konicek, L.: Experimental study of the stability of differentially heated inclined air layers. Int. J. Heat Mass Transfer 16, 1467–1476 (1973)

    Article  Google Scholar 

  • Holst, P.H., Aziz, K.: A theoretical and experimental study of natural convection in a confined porous medium. Can. J. Chem. Eng. 50, 232–241 (1972)

    Article  Google Scholar 

  • Ingham, D.B., Pop, I. (eds.): Transport Phenomena in Porous Media, vol 2. Pergamon, Oxford (2002)

    Google Scholar 

  • Kalabin, E.V., Kanashina, M.V., Zubkov, P.T.: Natural-convection heat transfer in a square cavity with time-varying side-wall temperature. Numer. Heat Transfer A 47, 621–631 (2005)

    Article  Google Scholar 

  • Kazmierczak, M., Chinoda, Z.: Buoyancy-driven flow in an enclosure with time periodic boundary conditions. Int. J. Heat Mass Transfer 35, 1507–1518 (1992)

    Article  Google Scholar 

  • Kazmierczak, M., Muley, A.: Steady and transient natural convection experiments in a horizontal porous layer: the effects of a thin top fluid layer and oscillating bottom wall temperature. Int. J. Heat Fluid Flow 15, 30–41 (1994)

    Article  Google Scholar 

  • Kwak, H.S.: Natural convection in an enclosure having a vertical sidewall with time-varying temperature. J. Fluid Mech. 329, 65–88 (1996)

    Article  Google Scholar 

  • Kwak, H.S., Kuwahara, K., Hyun, J.M.: Resonant enhancement of natural convection heat transfer in a square enclosure. Int. J. Heat Mass Transfer 41, 2837–2846 (1998a)

    Article  Google Scholar 

  • Kwak, H.S., Kuwahara, K., Hyun, J.M.: Prediction of the resonance frequency of natural convection in an enclosure with time-periodic heating imposed on one sidewall. Int. J. Heat Mass Transfer 41, 3157–3160 (1998b)

    Article  Google Scholar 

  • Lage, J.L., Bejan, A.: The resonance of natural convection in an enclosure heated periodically from the side. Int. J. Heat Mass Transfer 36, 2027–2038 (1993)

    Article  Google Scholar 

  • Lauriat, G., Prasad, V.: Non-Darcian effects on natural convection in a vertical porous enclosure. Int. J. Heat Mass Transfer 32, 2135–2148 (1989)

    Article  Google Scholar 

  • Lundgren, T.S.: Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273–299 (1972)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)

    Google Scholar 

  • Nithiarasu, P., Seetharamu, K.N., Sundararajan, T.: Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transfer 40, 3955–3967 (1997)

    Article  Google Scholar 

  • Nithiarasu, P., Seetharamu, K.N., Sundararajan, T.: Numerical investigation of buoyancy driven flow in a fluid saturated non-Darcian porous medium. Int. J. Heat Mass Transfer 42, 1205–1215 (1999)

    Article  Google Scholar 

  • Ozoe, H., Sayama, H., Churchill, S.W.: Natural convection in an inclined square channel. Int. J. Heat Mass Transfer 17, 401–406 (1974a)

    Article  Google Scholar 

  • Ozoe, H., Yamamoto, K., Sayama, H., Churchill, S.W.: Natural circulation in an inclined rectangular channel heated on one side and cooled on the opposing side. Int. J. Heat Mass Transfer 17, 1209–1217 (1974b)

    Article  Google Scholar 

  • Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York (1980)

    Google Scholar 

  • Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Oxford, Pergamon (2001)

    Google Scholar 

  • Rudraiah, N., Malashetty, M.S.: Effect of modulation on the onset of convection in sparsely packed porous layer. ASME J. Heat Transfer 112, 685–689 (1990)

    Article  Google Scholar 

  • Vafai, K. (ed.): Handbook of Porous Media. Marcel Dekker, New York (2000)

    Google Scholar 

  • Vafai, K. (ed.): Handbook of Porous Media. 2nd edn. Taylor & Francis, Baton Rouge (2005)

    Google Scholar 

  • Wang, Q.W., Wang, G., Zeng, M., Ozoe, H.: Upward heat flux through the horizontal fluid layer of water with sinusoidal wall temperature at the top or bottom boundary. Numer. Heat Transfer A 52, 817–829 (2007a)

    Article  Google Scholar 

  • Wang, Q.W., Wang, G., Zeng, M., Ozoe H.: Uni-directional heat flux through the horizontal fluid layer with sinusoidal wall temperature at the top or bottom boundaries. Int. J. Heat Mass Transfer (2007b). doi:10.1016/j.ijheatmasstransfer.2007.07.030

  • Wang, G., Wang, Q.W., Zeng, M., Ozoe, H.: Natural convection heat transfer in an inclined porous cavity under time-periodic boundary conditions with positive/negative inclined angles. J. Porous Media (2008, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuwang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Wang, Q., Zeng, M. et al. Numerical Study of Natural Convection Heat Transfer in an Inclined Porous Cavity with Time-Periodic Boundary Conditions. Transp Porous Med 74, 293–309 (2008). https://doi.org/10.1007/s11242-007-9198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-007-9198-0

Keywords

Navigation