Skip to main content
Log in

Linear stability of solutal convection in solidifying mushy layers: permeable mush–melt interface

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The linear stability theory is used to investigate analytically the effect of a permeable mush–melt boundary condition on the stability of solutal convection in a mushy layer of homogenous permeability at the near eutectic (solid) limit. The results clearly show that, in contrast to the impermeable mush–melt interface boundary condition, the application of the permeable mush–melt interface boundary condition destabilizes the convection in a mushy layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Latin Symbols :

 

g * :

Acceleration due to gravity

H * :

Height of the mushy layer

K * :

Permeability function

C :

Mixture composition

c p :

Specific heat of fluid

\(\hat{\varvec{e}}_z\) :

Unit vector in the z-direction.

h fs :

Latent heat of fluid

k 0 :

Characteristic permeability

L :

Length of the mushy layer

p :

Reduced pressure

R :

Rescaled mushy layer Rayleigh number, \(\sqrt{\delta Ra_{\rm m}}\)

Ra m :

Mushy layer Rayleigh number, β* ΔCg * k 0/ (ν * V f *)

s x :

X-component of wavenumber

s y :

Y-component of wavenumber

St :

Reciprocal of Stefan number, h fs / c p ΔT

t :

Time.

T :

Dimensionless temperature, (T * − T L) / (T L − T E)

u :

Horizontal x-component of the filtration velocity

V :

Dimensionless filtration velocity vector, \(u\hat{e}_x +v\hat{e}_y +w\hat{e}_z \).

v :

Horizontal y-component of filtration velocity

V *f :

Velocity of solidifying front

w :

Vertical component of filtration velocity

X :

Space vector, \(x\hat{e}_x +y\hat{e}_y +z\hat{e}_z \)

x :

Horizontal length co-ordinate

y :

Horizontal width co-ordinate

z :

Vertical co-ordinate

Greek Symbols :

 

α :

 = scaled wavenumber, s 2 / π 2

β C :

Solutal expansion coefficient

β T :

Thermal expansion coefficient

δ :

Dimensionless depth of mushy layer

ɛ:

Convection amplitude

\(\phi\) :

Porosity

\(\varphi\) :

Solid fraction = 1- \(\phi \)

κ :

Thermal diffusivity of liquid

μ :

Dynamic viscosity of the fluid

ν :

Kinematic viscosity

\(\Pi (\varphi)\) :

Dimensionless retardability function, k 0/ K *

\(\rho\) :

Fluid density

Γ:

Slope of liquidus line

\(\psi _{mk}\) :

Kronecker delta notation

Superscripts :

 

*:

Dimensional quantities

Subscripts :

 

0:

Simplified parameters

B:

Basic flow quantities

c:

Characteristic values

cr:

Critical values

E:

Eutectic conditions

l:

Liquid conditions

m:

Mush conditions

S:

Solid conditions

st:

Stationary conditions

∞:

Far field conditions

Over :

 

:

Rescaled quantities

~:

Unscaled quantities

References

  • Amberg G., Homsy G.M. (1993) Nonlinear analysis of buoyant convection in binary solidification to channel formation. J. Fluid Mech. 252, 79–98

    Article  Google Scholar 

  • Chen F., Lu J.W., Yang T.L. (1994) Convective instability in ammonium chloride solution directionally solidified from below. J. Fluid Mech. 302, 307–331

    Google Scholar 

  • Copley S.M., Giamet A.F., Johnson S.M., Hornbecker M.F. (1970) The origin of freckles in unidirectionally solidified castings. Metall. Trans. 1, 2193–2205

    Google Scholar 

  • Govender S., Vadasz P. (2002) Weak nonlinear analysis of moderate Stefan number oscillatory convection in rotating mushy layers. Transp. Porous Media 48, 353–372

    Article  Google Scholar 

  • Govender S. (2005) On the linear stability of moderate Stefan number convection in rotating mushy layers: a new Darcy equation formulation. Transp. Porous Media 59, 127–137

    Article  Google Scholar 

  • Nield D.A. (1998) Modelling effects of a magnetic field or rotation on flow in a porous medium: momentum equation and anisotropic permeability analogy. Int. J. Heat Mass Transfer 42, 3715–3718

    Article  Google Scholar 

  • Sarazin J.R, Hellawell A. (1988) Channel formation in Pb–Sn, Pb–Sb, and Pb–Sn–Sb alloy ingots and comparison with the system NH4Cl-H2O. Metall. Trans. 19A, 1861–1871

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saneshan Govender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govender, S. Linear stability of solutal convection in solidifying mushy layers: permeable mush–melt interface. Transp Porous Med 67, 431–439 (2007). https://doi.org/10.1007/s11242-006-9034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9034-y

Keywords

Navigation