Skip to main content
Log in

Coriolis Effect on the Stability of Centrifugally Driven Convection in a Rotating Anisotropic Porous Layer Subjected to Gravity

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We investigate natural convection in a fluid saturated rotating anisotropic porous layer subjected to centrifugal gravitational and Coriolis body forces. The Darcy model (including the centrifugal, gravitational and Coriolis terms; and permeability anisotropy effects) and a modified energy equation (including the effects of thermal anisotropy) is used in the current analysis. The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection in the presence of thermal and mechanical anisotropy. It is shown that the preferred solution comprises roll cells aligned parallel to the vertical z-axis. As a result, it is found that the Coriolis acceleration (or Taylor number) and the gravitational term play no role in the stability of convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Latin Symbols :

 

a k :

Coefficients in Galerkin expansion

g * :

Acceleration due to gravity

H * :

Height of the porous layer

\(\boldsymbol{\hat {e}}_x\) :

Unit vector in the x-direction

\(\boldsymbol{\hat {e}}_y\) :

Unit vector in the y-direction

\(\boldsymbol{\hat {e}}_z\) :

Unit vector in the z-direction

k :

Permeability tensor

k * x , k * y , k * z :

Characteristic permeabilities in the x-, y- and z- directions

L * :

Length of the porous layer

p :

Reduced pressure

R g :

Scaled gravitational Rayleigh number, Ra g / π2.

R ω :

Scaled centrifugal Rayleigh number, Ra ω/ π2.

Ra g :

Gravitational Rayleigh number, β* ΔTk * x g * L */ κ* x ν* ..

Ra ω :

Centrifugal Rayleigh number, \(\beta_{\ast} \Delta Tk_{\ast x} \omega_{\ast} ^{2} L_{\ast}^{2} \left/ \kappa_{\ast x} \nu _{\ast}\right.\).

s :

Wave number, \(\sqrt {s_y^2 +s_z^2} \)

s y :

y-component of wavenumber

s z :

z-component of wavenumber

t :

Time

T :

Dimensionless temperature, (T *T C)/ (T HT C) .

T C :

Temperature at cold wall

T H :

Temperature at hot wall

Ta :

Taylor number, defined as (2 ω* k * x / ν* ϕ *.)

u :

Horizontal x-component of the filtration velocity

v :

Horizontal y-component of filtration velocity

w :

Vertical component of filtration velocity

W * :

Width of porous layer

V :

Dimensionless filtration velocity vector, \(u\hat {e}_x +v\hat {e}_y+w\hat {e}_z\)

X :

Space vector, \(x\hat {e}_x +y\hat {e}_y +z\hat {e}_z\)

x :

Horizontal length co-ordinate

y :

Horizontal width co-ordinate

z :

Vertical co-ordinate

Greek Symbols :

 

α:

Scaled wavenumber, ξ s 2/ π2.

β* :

thermal expansion coefficient

η:

κ* y / κ * x .=κ * z / κ* x .

ϕ* :

Porosity

κ* :

Fluid thermal diffusivity

φ:

Parameter, η/ ξ .

μ* :

Fluid dynamic viscosity

ν* :

Fluid kinematic viscosity

θ:

Galerkin function

ρ* :

Fluid density

ω* :

Angular velocity

ξ:

k * y / k * x .=k * z / k * x .

Subscripts :

 

*:

Dimensional quantities

B :

Basic flow quantities

C:

Associated with cold wall

H:

Associated with hot wall

cr:

Critical values

References

  • Bejan A. (1995). Convection Heat Transfer, 2nd ed. Wiley, New York

    Google Scholar 

  • Epherre J.F. (1975). Critere d’ apparition de la convection naturelle dans une couche poreuse anisotrope. Rev. Gen. Thermique 168:949–950

    Google Scholar 

  • Govender, S.: On the effect of anisotropy on the stability of convection in rotating porous media. Transp. Porous Media (TiPM 208), In Press (2005)

  • McKibbin R. (1986). Thermal convection in a porous layer: effects of anisotropy and surface boundary conditions. Transp. Porous Media 1:271–292

    Article  Google Scholar 

  • Nield D.A., Bejan A. (1992). Convection in Porous Media. Springer, Berlin

    Google Scholar 

  • Storesletten L. (1993). Natural convection in a horizontal porous layer with anisotropic thermal diffusivity. Transp. Porous Media 12:19–29

    Article  Google Scholar 

  • Vadasz P. (1993). Three-dimensional free convection in a long rotating porous box. J. Heat Transf. 115:639–644

    Article  Google Scholar 

  • Vadasz P. (1994). Stability of free convection in a narrow porous layer subjected to rotation. Int. Commun. Heat Mass Transf. 21(6):881–890

    Article  Google Scholar 

  • Vadasz P. (1998). Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. J. Fluid Mech. 376:351–375

    Article  Google Scholar 

  • Wolfram S., Mathematica T.M. (1991). A System for Doing Mathematics by Computer, 2nd edn. Wolfram Research Addison-Wesley, Redwood City, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saneshan Govender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govender, S. Coriolis Effect on the Stability of Centrifugally Driven Convection in a Rotating Anisotropic Porous Layer Subjected to Gravity. Transp Porous Med 67, 219–227 (2007). https://doi.org/10.1007/s11242-006-9003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9003-5

Keywords

Navigation