Skip to main content
Log in

Hysteretic Θ(S) Curve Prediction: Comparison of Two Models

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The prediction of the first-order wetting and drying scanning curves is attempted by two different methods. These are: Mualem model II and Poulovassilis and Kargas (P–K). Model II by Mualem was chosen deliberately as the most appropriate. Experimental Θ (S) data obtained in the laboratory for a sand mixture and a real soil were used for the comparison. Moreover, data presented originally by Poulovassilis (1970) were also used for the same purpose. It is shown that the P–K method gives better results than Mualem’s model II. Some remarks on Mualem’s model are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. J. Enderby (1955) ArticleTitleThe domain model of hysteresis Trans. Faraday Soc 51 835–848

    Google Scholar 

  • A. J. Enderby (1956) ArticleTitleThe domain model of hysteresis 2 Trans. Faraday Soc 52 106–120

    Google Scholar 

  • D. H. Everett W. I. Whitton (1952) ArticleTitleA general approach to hysteresis Trans. Faraday Soc 48 749–757

    Google Scholar 

  • D. H. Everett F. W. Smith (1954) ArticleTitleA general approach to hysteresis 2 Trans. Faraday Soc 50 187–197

    Google Scholar 

  • D. H. Everett (1954) ArticleTitleA general approach to hysteresis 3 Trans. Faraday Soc 50 1077–1096

    Google Scholar 

  • D. H. Everett (1955) ArticleTitleA general approach to hysteresis 4 Trans. Faraday Soc 51 1551–1557

    Google Scholar 

  • W. B. Haines (1930) ArticleTitleStudies in the Physical properties of soils J. Agric. Sci. 20 97–116

    Google Scholar 

  • Haverkamp, R., Reggiani, P., Ross, P. J., and Parlange, J. Y.: 2002, Soil water hysteresis prediction model based on theory and geometric scaling, in: Raats, P., Smiles, D. and Warrick, A.W. (eds.), Enviromental Mechanics: Water, Mass and Energy Transfer in Biosphere. The Philip Volume, p. 213–246.

  • E. E. Miller R. D. Miller (1956) ArticleTitlePhysical theory for capillary flow phenomena J. Appl. Phys. 27 324–332

    Google Scholar 

  • Mualem, Y., and Dagan, G.: 1972, Hysteresis in unsaturated porous media: A critical review and new simplified approach, Report no. 4, Proj.A10-SWC-77, 93 pp., Technion – Israel Institute Of Technology. Haifa, Israel.

  • Y. Mualem (1973) ArticleTitleModified approach to capillary hysteresis based on a similarity hypothesis Water Resour. Res 9 1324–1331

    Google Scholar 

  • Y. Mualem (1974) ArticleTitleA conceptual model of hysteresis Water Resour. Res 10 514–520

    Google Scholar 

  • Y. Mualem G. Dagan (1975) ArticleTitleA dependent domain model of capillary hysteresis Water Resour. Res 11 452–460

    Google Scholar 

  • Y. Mualem (1977) ArticleTitleExtension of the similarity hypothesis used for modelling the soil water characteristics Water Resour. Res., 13 773–780

    Google Scholar 

  • Y. Mualem E. E. Miller (1979) ArticleTitleA hysteresis model based on an explicit domain-dependence function Soil Sci. Soc. Am. J., 43 1067–1073

    Google Scholar 

  • Y. Mualem (1984) ArticleTitleA modified dependent-domain theory of hysteresis Soil Sci. Soc. Am. J 137 283–291

    Google Scholar 

  • L. Neel (1942) ArticleTitleTheorie des lois d’ aimanation de Lord Rayleigh; I du deplacement d’une paroi isolee Cah. de Phys 12 1–20

    Google Scholar 

  • J. Y. Parlange (1976) ArticleTitleCapillary hysteresis and the relationship between drying and wetting curves Water Resour. Res 12 224–228

    Google Scholar 

  • J. R. Philip (1964) ArticleTitleSimilarity hypothesis for capillary hysteresis in porous materials J. Geophys. Res 69 1553–1562

    Google Scholar 

  • A. Poulovassilis (1962) ArticleTitleHysteresis of pore water an application of concept of independent domains Soil Sci 93 405–412

    Google Scholar 

  • A. Poulovassilis (1970) ArticleTitleHysteresis of pore water in granular porous bodies Soil Sci 109 5–12

    Google Scholar 

  • A. Poulovassilis E. E. Childs (1971) ArticleTitleThe hysteresis of pore water: The non-independence of domains Soil Sci 112 301–312

    Google Scholar 

  • A. Poulovassilis W. M. EL-Ghamry (1978) ArticleTitleThe dependent domain theory applied to scanning curves of any order in hysteretic soil water relationship Soil Sci 126 1–8

    Google Scholar 

  • A Poulovassilis G. Kargas (2000) ArticleTitleA Note on calculating hysteretic behaviour Soil Sci. Soc. Am. J 64 1947–1950

    Google Scholar 

  • F. Preisach (1935) ArticleTitleUber die magnetische Nachwirkung Z. Physik 94 277–302

    Google Scholar 

  • T. Talsma (1970) ArticleTitleHysteresis in two sands and the independent domain model Water. Resour. Res 6 964–970

    Google Scholar 

  • G. C. Topp E. E. Miller (1966) ArticleTitleHysteretic moisture characteristics and hydraulic conductivities for glass-bead media Soil Sci Soc. Am. Proc 30 156–162

    Google Scholar 

  • G. C. Topp (1969) ArticleTitleSoil-water Hysteresis measured in a sandy loam and compared with the hysteresis domain model Soil Sci Soc Am. Proc., 33 645–651

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kargas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargas, G., Kerkides, P. Hysteretic Θ(S) Curve Prediction: Comparison of Two Models. Transp Porous Med 59, 97–113 (2005). https://doi.org/10.1007/s11242-004-1117-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-004-1117-z

Keywords

Navigation