Skip to main content
Log in

Introduction of the Nicotiana protein kinase (NPK1) gene by combining Agrobacterium-mediated transformation and recurrent somatic embryogenesis to enhance salt tolerance in cauliflower

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cauliflower is exposed to various biotic and abiotic stresses, including increased salinity due to the intensive irrigation of crops. Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play important roles in regulating innate immune responses in plants. Based on involvement of tobacco MAP kinase kinase kinase (NPK1) in stress response, the effect of the expression of NPK1 transgene to NaCl salt stress tolerance in cauliflower KFRM4 lines was studied. The Agrobacterium tumefaciens-mediated transformation protocol, using EHA101(pSHX004) vector harbouring the NPK1 and phosphinothricin N-acetyltransferase (bar) genes, the cyclic somatic embryogenesis regeneration pathway, the application of acetosyringone (AS) during co-cultivation and a delayed phosphinothricine (PPT) selection procedure provided sufficient transformation efficiency of 7.33% without escapes. PCR analysis indicated the integration of both NPK1 and bar transgenes in regenerated cauliflower lines. Transgenic cauliflower lines, exposed to NaCl stress in vitro, showed higher growth rates, greater ability to retain chlorophyll and carotenoids, and increased osmotic regulation capacity compared with non-transformed control plants. The tolerance level of transformed lines correlated with the level of NPK1 gene expression estimated by RT-qPCR, and the L2 line with the highest NPK1 expression displayed the greatest tolerance to NaCl stress. None of the obtained cauliflower transformed lines grown in greenhouses showed any morphological or yield differences compared with non-transformed plants. Furthermore, the expression of the bar gene facilitated the tolerance of transformed lines to the total herbicide PPT, applied at concentrations 2–3 times higher than those routinely used for weed control in the crop field.

Key message

The results underlined that constitutively expressing NPK1 can significantly contribute to enhanced salt stress tolerance in cauliflower, suggesting that this could be a promising basis for the creation of new stress tolerance cruciferous vegetable lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdollahi MR, Moieni A, Mousavi A, Salmanian AH (2011) High frequency production of rapeseed transgenic plants via combination of microprojectile bombardment and secondary embryogenesis of microspore-derived embryos. Mol Biol Rep 38:711–719

    CAS  PubMed  Google Scholar 

  • Andrási N, Rigó G, Zsigmond L, Pérez-Salamó I, Papdi C, Klement E, Pettkó-Szandtner A, Baba A, Ayaydin F, Dasari R, Cséplö A, Szabados L (2019) The MPK4-phosphorylated Heat Shock Factor A4A regulates responses to combined salt and heat stresses. J Exp Bot 70:4903–4917

    PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    CAS  Google Scholar 

  • Assem SK, Hussein EH, Hussein HA, Basry M (2009) Genetic transformation of the Nicotiana protein kinase (NPK1) gene confers osmotic tolerance in Egyptian maize. Aust J Basic Appl Sci 3:828–835

    CAS  Google Scholar 

  • Banno H, Hirano K, Nakamura T, Irie K, Nomoto S, Matsumoto K, Machida Y (1993) PK1, a tobacco gene that encodes a protein with a domain homologous to yeast BCK1, STE11, and Byr2 protein kinases. Mol Cell Biol 13:4745–4752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Bhalla PL, Singh M (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 2:181–189

    Google Scholar 

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosyntesis, a global sensor of environmental stress in green plants: stress signaling and adaptation. Curr Sci 100:1–10

    Google Scholar 

  • Boudsocq M, Laurière C (2005) Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol 138:1185–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brouers M, Michel-Wolwertz M-R (1983) Estimation of protochlorophyll(ide) contents in plant extracts; re-evaluation of the molar absorption coefficient of protochlorophyll(ide). Photosynth Res 4:265–270

    CAS  PubMed  Google Scholar 

  • Cicek N, Cakirlar H (2002) The effect of salinity on some physiological parameters in two maize cultivars. Bulg J Plant Physiol 28:66–74

    Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    CAS  PubMed  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Pascale S, Maggio A, Barbieri G (2005) Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli. Euro J Agron 23:254–264

    Google Scholar 

  • Deo PC, Harding RM, Taylor M, Tyagi AP, Becker DK (2009) Somatic embryogenesis, organogenesis and plant regeneration in taro (Colocasia esculenta var. esculenta). Plant Cell Tissue Organ Cult 99:61–71

    Google Scholar 

  • Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11:976–985

    CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Duke SO, Cantrell CL, Meepagala KM, Wedge DE, Tabanca N, Schrader KK (2010) Natural toxins for use in pest management. Toxins 2:1943–1962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153

    CAS  PubMed  Google Scholar 

  • Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437a–437g

    Google Scholar 

  • Giuffrida F, Giurato R, Cherubino L (2013) Effects of NaCl salinity on yield, quality and mineral composition of broccoli and cauliflower. Acta Hortic 1005:531–538

    Google Scholar 

  • Giuffrida F, Scuderi D, Giurato R, Cherubino L (2013) Physiological response of broccoli and cauliflower as affected by NaCl salinity. Acta Hortic 1005:435–441

    Google Scholar 

  • Hirt H (2000) Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. PNAS 97:2405–2407

    CAS  PubMed  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y et al (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    CAS  PubMed  Google Scholar 

  • Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A (2018) Mitogen-Activated protein kinase cascades in plant hormone signaling. Front Plant Sci 9:1387

    PubMed  PubMed Central  Google Scholar 

  • Jeong M-J, Lee S-K, Kim B-G, Kwon T-R, Cho W-S, Park Y-T, Lee J-O, Kwon H-B, Byun M-O, Park S-C (2006) A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell Tissue Organ Cult 85:151–160

    CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defense. J Genet 85:237–254

    CAS  PubMed  Google Scholar 

  • Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34:1291–1303

    CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. PNAS 97:2940–2945

    CAS  PubMed  Google Scholar 

  • Kramer C, DiMaio J, Carswell GK, Shillito RD (1993) Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190:454–458

    CAS  Google Scholar 

  • Kumar K, Wankhede DP, Sinha AK (2013) Signal convergence through the lenses of MAP kinases: paradigms of stress and hormone signaling in plants. Front Biol 8:109–118

    CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazher AMA, El-Quesni EMF, Farahat MM (2007) Responses of ornamental and woody trees to salinity. World J Agric Sci 3:386–395

    Google Scholar 

  • Merkel U, Rathke G-W, Schuster C, Warnstorff K, Diepenbrock W (2004) Use of glufosinate-ammonium to control cruciferous weed species in glufosinate-resistant winter oilsee rape. Field Crops Res 85:237–249

    Google Scholar 

  • Moustafa K, AbuQamar S, Jarrar M, Al-Rajab AJ, Trémouillaux-Guiller J (2014) MAPK cascades and major abiotic stresses. Plant Cell Rep 33:1217–1225

    CAS  PubMed  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82:371–406

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Muoma JVO, Ombori O (2014) Agrobacterium-mediated transformation of selected Kenyan maize (Zea mays L.) genotypes by introgression of Nicotiana protein kinase (npk1) to enhance drought tolerance. J Plant Sci 5:863–883

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nakagami H, Soukupová H, Schikora A, Zárský V, Hirt H (2006) A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704

    CAS  PubMed  Google Scholar 

  • Omer RA, Matheka JM, Ali AM, Machuka J (2013) Transformation of tropical maize with the NPK1 gene for drought tolerance. Int J Genet Eng 3:7–14

    Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical response of plants—a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Pavlović S, Vinterhalter B, Mitić N, Adžić S, Pavlović N, Zdravković M, Vinterhalter D (2010) In vitro shoot regeneration from seedling explants in Brassica vegetables: red cabbage, broccoli, savoy cabbage and cauliflower. Arch Biol Sci 62:337–345

    Google Scholar 

  • Pavlović S, Vinterhalter B, Zdravković-Korać S, Vinterhalter D, Zdravković J, Cvikić D, Mitić N (2013) Recurrent somatic embryogenesis and plant regeneration from immature zygotic embryos of cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis). Plant Cell Tissue Organ Cult 113:397–406

    Google Scholar 

  • Pedley KF, Martin GB (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol 8:541–547

    CAS  PubMed  Google Scholar 

  • Pilorge E, Mircovich C (1999) Weed control strategies using GMO herbicide tolerant oilseed rape. In: Wratten N, Salibury P (eds) Proceedings of the 10th International Rapeseed Congress, Canberra, September 26–29. (https://www.regional.org.au/au/gcirc/)

  • Prasad BVG, Chakravorty S (2015) Effects of climate change on vegetable cultivation—a review. Nat Environ Pollut Technol 14:4

    Google Scholar 

  • Qasem JR (2007) Weed control in cauliflower (Brassica oleracea var Botrytis L.) with herbicides. Crop Prot 26:1013–1020

    CAS  Google Scholar 

  • Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    CAS  PubMed  Google Scholar 

  • Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31:118–128

    PubMed  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH, Mueller-Roeber B (2013) Salt-responsive ERF1 regulates reactive oxygen species–dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah N, Anwar S, Xu J, Hou Z, Salah A, Khan S, Gong J, Shang Z, Qian L, Zhang C (2018) The response of transgenic Brassica species to salt stress—a review. Biotechnol Lett 40:1159–1165

    CAS  PubMed  Google Scholar 

  • Shou H, Bordallo P, Fan J-B, Yeakley JM, Bibikova M, Wang K (2004) Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. PNAS 101:3298–3303

    CAS  PubMed  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    CAS  PubMed  Google Scholar 

  • Shou H, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    CAS  Google Scholar 

  • Smékalová V, Doskočilová A, Komis G, Šamaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32:2–11

    PubMed  Google Scholar 

  • Srivastava AK, Zhang C, Yates G, Bailey M, Brown A, Sadanandom A (2016) SUMO is a critical regulator of salt stress responses in rice. Plant Physiol 170:2378–2391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microprojectile bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21:963–977

    CAS  PubMed  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Roczi F, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    CAS  PubMed  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. AJCS 6:1337–1348

    Google Scholar 

  • Vinterhalter D, Sretenović-Rajičić T, Vinterhalter B, Ninković S (2007) Genetic transformation of Brassica oleracea vegetables. Transgenic Plant J 1:340–355

    Google Scholar 

  • Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73

    PubMed  PubMed Central  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Li K, Yang F, Shi Q, Wang X (2010) Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol Biol Rep 37:3157–3163

    CAS  PubMed  Google Scholar 

  • Xu H, Sun X, Yang X, Shi Q, Wang X (2013) Physiological responses to nitrate stress of transgenic tobacco plants harbouring the cucumber mitogen-activated protein kinase gene. Turk J Bot 37:130–138

    CAS  Google Scholar 

  • Yu Y, Liu LS, Zhao YQ, Zhao B, Guo YD (2010) A highly efficient in vitro plant regeneration and Agrobacterium-mediated transformation of Brassica oleracea var. botrytis. N Z J Crop Hortic Sci 38:235–245

    CAS  Google Scholar 

  • Yu SM, Lo SF, Ho THD (2015) Source–sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci 20:844–857

    CAS  PubMed  Google Scholar 

  • Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31

    CAS  PubMed  Google Scholar 

  • Zhou X, Cao G, Lin R, Sun Y, Li W (1994) A rapid and efficient DNA extraction method of genus Fagopyrum for RAPD analysis. In: Javornik B, Bohanec B, Kreft I (eds) Proceedings of impact of plant biotechnology on agriculture. Biotechnical Faculty, Ljubljana, pp 171–175.

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of Serbia (No. OI173015 and TR31059). We thank Professor Kang Wang from IOWA State University, Ames, USA for providing A. tumefaciens EHA101(pSHX004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Pavlović.

Ethics declarations

Conflict of interest

The authors have no have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Sergio J. Ochatt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlović, S., Savić, J., Milojević, J. et al. Introduction of the Nicotiana protein kinase (NPK1) gene by combining Agrobacterium-mediated transformation and recurrent somatic embryogenesis to enhance salt tolerance in cauliflower. Plant Cell Tiss Organ Cult 143, 635–651 (2020). https://doi.org/10.1007/s11240-020-01948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01948-6

Keywords

Navigation