Skip to main content
Log in

Proteomic analysis of Mammillaria gracilis Pfeiff. in vitro-grown cultures exposed to iso-osmotic NaCl and mannitol

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Salt and drought stress are important abiotic factors that negatively affect plant growth and productivity. Defense mechanisms, which plants have developed to cope with stress, are followed by alterations in a genome expression profile that in turn result in qualitative and quantitative change of the proteome. Although proteomic-based approach for studies of plant responses to salinity and drought has already been successfully employed in several plants, for cactus species such analyses have not been done so far. Therefore, in this study we have performed proteomic analysis of Mammillaria gracilis Pfeiff. in vitro-grown cultures, callus and tumor, exposed to iso-osmotic NaCl and mannitol. Obtained results differed among analyzed tissues. The higher number of differentially expressed proteins after either salt or mannitol treatment was revealed in tumor compared to callus. According to classification to different functional categories, majority of the identified callus responsive proteins belongs to protein synthesis and processing category, while the highest number of identified tumor proteins belongs to category of metabolism, which suggest that the mechanisms that mediate responses to salt- and mannitol-induced stress in cactus callus and tumor are dependent on tissue type. Down-regulation of proteins involved in cell protection suggests the inability of tumor to activate protective processes against salinity and osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    CAS  PubMed  Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2008) Proteome analysis of potato under salt tress. J Proteome Res 7:4858–4868

    CAS  PubMed  Google Scholar 

  • Ashoub A, Beckhaus T, Berberich T, Karas M, Brüggemann W (2013) Comparative analysis of barley leaf proteome as affected by drought stress. Planta 237:771–781

    CAS  PubMed  Google Scholar 

  • Balen B, Tkalec M, Pavoković D, Pevalek-Kozlina B, Krsnik-Rasol M (2009) Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissues. J Plant Growth Regul 28:36–45

    CAS  Google Scholar 

  • Balen B, Tkalec M, Rogić T, Šimac M, Peharec Štefanić P, Vidaković-Cifrek Ž, Krsnik-Rasol M (2012) In vitro conditions affect photosynthetic performance and crassulacean acid metabolism in Mammillaria gracilis Pfeiff. tissues. Acta Physiol Plant 34:1883–1893

    CAS  Google Scholar 

  • Balen B, Tkalec M, Rogić T, Šimac M, Peharec Štefanić P, Rončević S, Pitarević Svedružić L (2013) Effects of iso-osmotic NaCl and mannitol on growth, proline content, and antioxidant defense in Mammillaria gracilis Pfeiff. in vitro-grown cultures. In Vitro Cell Dev Biol Plant 49:421–432

    CAS  Google Scholar 

  • Bandehagh A, Uliaie ED, Salekdeh GH (2013) Proteomic analysis of rapeseed (Brassica napus L.) seedling roots under salt stress. Ann Biol Res 4:212–221

    CAS  Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    CAS  Google Scholar 

  • Bogeat-Triboulot M-B, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman J-F, Polle A, Kangasjarvi J, Dreyer E (2007) Plant gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–524

    CAS  PubMed  Google Scholar 

  • Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27:354–377

    CAS  PubMed  Google Scholar 

  • Castillo E, Tuong TP, Ismail AM, Inubushi K (2007) Response to salinity in rice: comparative effects of osmotic and ionic stresses. Plant Prod Sci 10:159–170

    CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costa P, Bahrman N, Frigerio J-M, Kremer A, Plomion C (1998) Water-deficit-responsive proteins in maritime pine. Plant Mol Biol 38:587–596

    CAS  PubMed  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    CAS  PubMed  Google Scholar 

  • Cramer GR, Van SluyterSC, Hopper DW, Pascovici D, Keighley T, Haynes PA (2013) Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biol 13:49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    CAS  PubMed  Google Scholar 

  • Du CX, Fan HF, Guo SR, Tezuka T, Li J (2010) Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 71:1450–1459

    CAS  PubMed  Google Scholar 

  • Elias-Rocha MA, Santos-Diaz MD, Arredondo-Gomez A (1998) Propagation of Mammillaria candida (Cactaceae) by tissue culture techniques. Haseltonia 6:96–101

    Google Scholar 

  • Erdei L, Trivedi S, Takeda K, Matsumoto H (1990) Effects of osmotic and salt stresses on the accumulation of polyamines in leaf segments from wheat varieties differing in salt and drought tolerance. J Plant Physiol 137:165–168

    CAS  Google Scholar 

  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomar M, Skali-Senhaji N (2007) Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102

    CAS  Google Scholar 

  • Esposito AM, Kinzy TG (2010) The eukaryotic translation elongation Factor 1Bgamma has a non-guanine nucleotide exchange factor role in protein metabolism. J Biol Chem 285:37995–38004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faurobert M, Pelpoir E, Chaib J (2007) Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Methods Mol Biol 355:9–14

    CAS  PubMed  Google Scholar 

  • Finka A, Mattoo RUH, Goloubinoff P (2011) Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperon 16:15–31

    CAS  Google Scholar 

  • Gao F, Zhou Y, Huang L, He D, Zhang G (2008) Proteomic analysis of long-term salinity stress-responsive proteins in Thellungiella halophila leaves. Chin Sci Bull 53:3530–3537

    CAS  Google Scholar 

  • Gygi SP, Aebersold R (2000) Mass spectrometry and proteomics. Curr Opin Chem Biol 4:489–494

    CAS  PubMed  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    CAS  PubMed  Google Scholar 

  • Hancock JT, Henson D, Nyirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ (2005) Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem 43:828–835

    CAS  PubMed  Google Scholar 

  • Hirano H, Islam N, Kawasaki H (2004) Techical aspects of functional proteomics in plants. Phytochemistry 65:1487–1489

    CAS  PubMed  Google Scholar 

  • Hu Y, Burucs Z, Tucher SV, Schmidhalter U (2007) Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environ Exp Bot 60:268–275

    CAS  Google Scholar 

  • Ishida H, Nishimori Y, Sugisawa M, Makino A, Mae T (1997) The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen species in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol 38:471–479

    CAS  PubMed  Google Scholar 

  • Jeong MJ, Park SC, Byun MO (2001) Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer. Mol Cell 12:185–189

    CAS  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    CAS  PubMed  Google Scholar 

  • Jorrín JV, Maldonado A, Castillejo MA (2007) Plant proteome analysis: a 2006 update. Proteomics 7:2947–2962

    PubMed  Google Scholar 

  • Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    PubMed  Google Scholar 

  • Kausar R, Arshad M, Shahzad A, Komatsu S (2013) Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids 44:345–359

    CAS  PubMed  Google Scholar 

  • Kempa S, Krasensky J, Dal Santo S, Kopka J, Jonak C (2008) A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS One. doi:10.1371/journal.pone.0003935

    PubMed Central  PubMed  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    CAS  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757–6789

    PubMed Central  PubMed  Google Scholar 

  • Krsnik-Rasol M, Balen B (2001) Electrophoretic protein patterns and peroxidase activity related to morphogenesis in Mammillaria gracilis tissue culture. Acta Bot Croat 2:219–226

    Google Scholar 

  • Kurepa J, Smalle JA (2008) Structure, function and regulation of plant proteasomes. Biochimie 90:324–335

    CAS  PubMed  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Lagana A, Caruso G, Cavaliere C, Foglia P, Gubbiotti R, Samperi R (2009) Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Sci 177:570–576

    Google Scholar 

  • Lefèvre I, Gratia E, Lutts S (2001) Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci 161:943–952

    Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007) An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane associated transcription factor, AtbZIP28. Plant Cell 19:4111–4119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llamoca-Zarate RM, Studart-Guimaraes C, Landsmann J, Campos FAP (1999) Establishment of callus and cell suspension cultures of Opuntia ficus-indica. Plant Cell Tissue Organ Cult 58:155–157

    Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 104:41–49

    CAS  Google Scholar 

  • Lunde C, Baumann U, Shirley NJ, Drew DP, Fincher GB (2006) Gene structure and expression pattern analysis of three monodehydroascorbate reductase (Mdhar) genes in Physcomitrella patens: implications for the evolution of the MDHAR family in plants. Plant Mol Biol J 60:259–275

    CAS  Google Scholar 

  • Lv DW, Subburaj S, Cao M, Yan X, Li X, Appels R, Sun DF, Ma W, Yan YM (2014) Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Mol Cell Proteomics 13:632–652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–479

    CAS  Google Scholar 

  • Murillo-Amador B, Cortés-Avila E, Troyo-Diéguez A, Nieto-Garibay HGJ (2001) Effects of NaCl salinity on growth and production of young cladodes of Opuntia ficus-indica. J Agron Crop Sci 187:269–279

    CAS  Google Scholar 

  • Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Kim DY, Kim BG, Yoon IS (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 10:25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Odanaka S, Bennett AB, Kanayama Y (2002) Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Physiol 129:1119–1126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olarewaju O, Ortiz PA, Chowdhury WQ, Chatterjee I, Kinzy TG (2004) The translation elongation factor eEF1B plays a role in the oxidative stress response pathway. RNA Biol 1:89–94

    CAS  PubMed  Google Scholar 

  • Omar S, Elsheery N, Kalaji MH, Xu Z-F, Song S-Q, Carpentier R, Lee C-H, Allakhverdiev SI (2012) Dehydroascorbate reductase and glutathione reductase play an important role in scavenging hydrogen peroxide during natural and artificial dehydration of Jatropha curcas seeds. J Plant Biol 55:469–480

    CAS  Google Scholar 

  • Pavoković D, Križnik B, Krsnik-Rasol M (2011) Evaluation of protein extraction methods for proteomic analysis of non-model recalcitrant plant tissues. Croat Chem Acta 85:177–183

    Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Muñoz-Rueda A, Navari-Izzo F, Mena-Petite A (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plant 135:29–42

    PubMed  Google Scholar 

  • Poljuha D, Balen B, Bauer A, Ljubešić N, Krsnik-Rasol M (2003) Morphology and ultrastructure of Mammillaria gracilis (Cactaceae) in in vitro culture. Plant Cell Tissue Organ Cult 75:117–123

    Google Scholar 

  • Priya S, Sharma SK, Goloubinoff P (2013a) Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett 587:1981–1987

    CAS  PubMed  Google Scholar 

  • Priya S, Sharma SK, Sood V, Mattoo RUH, Finka A, Azem A, De Los RiosP, Goloubinoff P (2013b) GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP. PNAS 110:7199–7204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rautengarten C, Steinhauser D, Büssis D, Stintzi A, Schaller A, Kopka J, Altmann T (2005) Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family. PLoS Comput Biol. doi:10.1371/journal.pcbi.0010040

    PubMed Central  PubMed  Google Scholar 

  • Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10:1–16

    Google Scholar 

  • Renault H, El Amrani A, Berger A, Mouille G, Soubigou-Taconnat L, Bouchereau A, Deleu C (2013) γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ 36:1009–1018

    CAS  PubMed  Google Scholar 

  • Rius SP, Casati P, Iglesias AA, Gomez-Casati DF (2008) Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol 148:1655–1667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B, Wiley HS (2008) Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 24:2894–2900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    CAS  PubMed  Google Scholar 

  • Rout NP, Shaw BP (2001) Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Sci 160:415–423

    CAS  PubMed  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    CAS  PubMed  Google Scholar 

  • Sasidharan R, Voesenek LA, Pierik R (2011) Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit Rev Plant Sci 30:548–562

    CAS  Google Scholar 

  • Sasikumar AN, Perez WB, Kinzy TG (2012) The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA 3:543–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma SK, De Los RiosP, Christen P, Lustig A, Goloubinoff P (2010) The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol 6:914–920

    CAS  PubMed  Google Scholar 

  • Sharma S, Mustafiza A, Singla-Pareeka SL, Srivastavab PS, Soporya SK (2012) Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice. Plant Signal Behav 7:1337–1345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz GA, Jiménez-Bremont JF (2008) Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92

    CAS  PubMed  Google Scholar 

  • Sirover MA (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta 1810:741–751

    CAS  PubMed  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Yakoumakis D, Delis ID, Kouvarakis A, Papadakis AK, Stephanou E, Roubelakis-Angelakis KA (2006) Abiotic stress generated ROS signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis. Plant Cell 18:2767–2781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:19–25

    PubMed Central  PubMed  Google Scholar 

  • Spollen WG, Tao W, Valliyodan B, Chen K, Hejlek L, Kim J-J, LeNoble M, Zhu J, Bohnert H, Henderson D, Schachtman DP, Davis GE, Springer GK, Sharp RE, Nguyen HT (2008) Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biol 8:32

    PubMed Central  PubMed  Google Scholar 

  • Staples RC, Stahmann MA (1964) Changes in proteins and several enzymes in susceptible bean leaves after infection by the bean rust fungus. Phytopathology 54:1950–1953

    Google Scholar 

  • Taylor NL, Tan Y-F, Jacoby RP, Millar HA (2009) Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. J Proteomics 72:367–378

    CAS  PubMed  Google Scholar 

  • Teige M, Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R (2010) The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J 63:484–498

    PubMed Central  PubMed  Google Scholar 

  • Teixeira J, Pereira S (2007) High salinity and drought act on an organ dependent manner on potato glutamine synthetase expression and accumulation. Environ Exp Bot 60:121–126

    CAS  Google Scholar 

  • Tonon G, Kevers C, Faivre-Rampant O, Grazianil M, Gaspar T (2004) Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol 161:701–708

    CAS  PubMed  Google Scholar 

  • Toorchi M, Yukawa K, Nouri MZ, Komatsu S (2009) Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides 30:2108–2117

    CAS  PubMed  Google Scholar 

  • Ueda A, Kathiresan A, Inada M, Narita Y, Nakamura T, Shi W, Takabe T, Bennett J (2004) Osmotic stress in barley regulates expression of a different set of genes than salt stress does. J Exp Bot 55:2213–2218

    CAS  PubMed  Google Scholar 

  • Vervliet G, Holsters M, Teuchy H, Van Montagu M, Schell J (1974) Characterisation of different plaque-forming and defective temperate phages in Agrobacterium strains. J Gen Virol 26:33–48

    Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  PubMed  Google Scholar 

  • Wang M-C, Peng Z-Y, Li C-L, Li F, Liu C, Xia G-M (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    CAS  PubMed  Google Scholar 

  • Wang H, Zhang M, Guo R, Shi D, Liu B, Lin X, Yang C (2012) Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol 12:194

    PubMed Central  PubMed  Google Scholar 

  • Wang L, Liu X, Liang M, Tan F, Liang W, Chen Y, Lin Y, Huang L, Jianhong X, Chen W (2014) Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. PLoS One. doi:10.1371/journal.pone.0083141

    Google Scholar 

  • Weretilnyk EA, Alexander KJ, Drebenstedt M, Snider JD, Summers PS, Moffatt BA (2001) Maintaining methylation activities during salt atress. The involvement of adenosine kinase. Plant Physiol 125:856–865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67

    CAS  PubMed  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress responsive proteins in rice root. Proteomics 5:235–244

    CAS  PubMed  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    CAS  PubMed  Google Scholar 

  • Yang Z-B, Eticha D, Führs H, Heintz D, Ayoub D, Van Dorsselaer A, Schlingmann B, Rao IM, Braun H-P, Horst WJ (2013) Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.). J Exp Bot 64:5569–5586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XH, Rao XL, Shi HT, Li RJ, Lu YT (2011) Overexpression of a cytosolic glyceraldehydes-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice. Plant Cell Tissue Organ Cult 107:1–11

    CAS  Google Scholar 

  • Zhu J, Alvarez S, Marsh EL, Lenoble ME, Cho IJ, Sivaguru M, Chen S, Nguyen HT, Wu Y, Schachtman DP, Sharp RE (2007) Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol 145:1533–1548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zivy M, de Vienne D (2000) Proteomics: a link between genomics, genetics and physiology. Plant Mol Biol 44:575–580

    CAS  PubMed  Google Scholar 

  • Zörb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167:91–100

    Google Scholar 

Download references

Acknowledgments

The financial support of this work was provided by The Ministry of Science, Education and Sports of the Republic of Croatia (119-1191196-1200) as well as by the University of Zagreb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Balen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogić, T., Horvatić, A., Tkalec, M. et al. Proteomic analysis of Mammillaria gracilis Pfeiff. in vitro-grown cultures exposed to iso-osmotic NaCl and mannitol. Plant Cell Tiss Organ Cult 122, 127–146 (2015). https://doi.org/10.1007/s11240-015-0756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0756-9

Keywords

Navigation