Skip to main content

Advertisement

Log in

Overexpression of SaRBP1 enhances tolerance of Arabidopsis to salt stress

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Abiotic stresses are the major concern in recent years as their effect on world food production is constantly increasing. We have obtained salt tolerant Arabidopsis lines overexpressing SaRBP1 (Suaeda asparagoides RNA binding protein 1) of a Korean halophyte, S. asparagoides. Homozygous T3 Arabidopsis transgenic lines were developed and used for salt stress tolerance studies. The transgenic seedlings displayed tolerance to salt and mannitol compared to the wild type (WT) seedlings. Transgenic lines produced longer primary roots, more fresh weight, and higher number of lateral roots than WT. In planta stress tolerance assay results showed that the survival rates of transgenic plants were significantly higher than WT plants. Transgenic lines showed delayed germination under 200 mM NaCl stress. In addition, the transgenics showed higher water retention ability than WT. Subcellular localization results revealed that SaRBP1 was targeted to the cytoplasm. Northwestern blot analysis results confirmed the RNA binding property of SaRBP1. Quantitative Real-Time Polymerase Chain Reaction results revealed that many stress marker genes were upregulated by SaRBP1 overexpression. Thus, our data demonstrate that SaRBP1 overexpression lines are tolerant to salt stress. Hence, this is the first report for the functional characterization of SaRBP1, a novel RBP gene isolated from S. asparagoides cDNA library.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GFP:

Green fluorescent protein

WT:

Wild type

SaRBP1:

Suaeda asparagoides RNA binding protein 1

GRP:

Glycine-rich RNA binding protein

EGFP:

Enhanced green fluorescent protein

GST:

Glutathione S-transferase

SDS-PAGE:

Sodium dodecyl sulfate-poly acrylamide gel electrophoresis

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    Article  CAS  PubMed  Google Scholar 

  • Amal H, Arjun K, Madana MRA, Andy P (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Google Scholar 

  • Ambrosone A, Costa A, Leone A, Grillo S (2012) Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints. Plant Sci 182:12–18

    Article  CAS  PubMed  Google Scholar 

  • Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud JP (2010) RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 51(12):1975–1987

    Article  CAS  PubMed  Google Scholar 

  • Ayarpadikannan S, Chung E, Cho C, So H, Kim S, Jeon J, Kwak M, Lee S, Lee J (2012) Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides. Plant Cell Rep 31:35–48

    Article  CAS  PubMed  Google Scholar 

  • Bocca SN, Magioli C, Mangeon A, Junqueira RM, Cardeal V, Margis R, Sachetto MG (2005) Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Genet Mol Biol 28:608–624

    Article  CAS  Google Scholar 

  • Cao S, Foster C, Lazo JS, Kingston DGI (2006) Four diterpenoid inhibitors of Cdc25B phosphatase from a marine anemone. ChemInform 37:5830–5834

    Google Scholar 

  • Chen J, Jiang H, Hsieh E, Chen H, Chien C, Hsieh H, Lin T (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Y, Chen X (2004) Posttranscriptional control of plant development. Curr Opin Plant Biol 7:20–25

    Article  CAS  PubMed  Google Scholar 

  • Chung E, Cho C, Yun B, Choi H, So H, Lee S, Lee J (2009) Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature and high salinity stress. Gene 443:91–99

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR (2011) RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 39:D301–D308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datta K, Baisakh N, Ganguly M, Krishnan L, Shinozaki KY, Datta SK (2012) Overexpression of Arabidopsis and Rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10:579–586

    Article  CAS  PubMed  Google Scholar 

  • Dreyfuss G, Matunis MJ, Pinol RS, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321

    Article  CAS  PubMed  Google Scholar 

  • Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205

    Article  CAS  PubMed  Google Scholar 

  • Fernández A, Laín S, García JA (1995) RNA helicase activity of the plum pox potyvirus Cl protein expressed in Escherichia coli. Mapping of an RNA binding domain. Nucleic Acids Res 23:1327–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Gabor J, Jurriaan T, Victor F, Laurent Z, Jean-Pierre M, Brigitte M (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274

    Google Scholar 

  • Ganguly M, Datta K, Roychoudhury A, Gayen D, Sengupta DN, Datta SK (2012) Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signal Behav 7(4):502–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gendra E, Moreno A, Albà MM, Pages M (2004) Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. Plant J 38:875–886

    Article  CAS  PubMed  Google Scholar 

  • Guthrie C, Steitz J (2005) Nucleus and gene expression: coordinated nuclear events regulate mRNA synthesis, processing, export and turnover. Curr Opin Cell Biol 17:239–241

    Article  CAS  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong J (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khurram Z, Rachid L, Pengjuan G, Hui L, Qinqin H, Taotao W, Hanxia L, Zhibiao Y (2011) A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Plant Cell Physiol 52(6):1055–1067

    Google Scholar 

  • Kihara T, Zhao CR, Kobayashi Y, Takita E, Kawazu T, Koyama H (2006) Simple identification of transgenic Arabidopsis plants carrying a single copy of the integrated gene. Biosci Biotechnol Biochem 70(7):1780–1783

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kim JS, Kang H (2005) Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J 42:890–900

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung C, Kang H (2007a) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35:506–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JY, Park SJ, Jang B, Jung C, Ahn SJ, Goh C, Cho K, Han O, Kang H (2007b) Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J 50:439–451

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Jung HJ, Lee HJ, Kim KA, Goh C, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55:455–466

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim WY, Kwak KJ, Oh SH, Han YS, Kang H (2010) Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J Exp Bot 61:2317–2325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6(6):262–267

    Article  CAS  PubMed  Google Scholar 

  • Kwak KJ, Kim YO, Kang H (2005) Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp Bot 56:3007–3016

    Article  CAS  PubMed  Google Scholar 

  • Lambermon MHL, Fu Y, Kirk DAW, Dupasquier M, Filipowicz W, Lorković ZJ (2002) UBA1 and UBA2, two proteins that interact with UBP1, a multifunctional effector of pre-mRNA maturation in plants. Mol Cell Biol 22:4346–4357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MW, Yang Y (2006) Transient expression assay by agroinfiltration of leaves. Methods Mol Biol 323:225–229

    PubMed  Google Scholar 

  • Lejeune F, Maquat LE (2005) Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 17:309–315

    Article  CAS  PubMed  Google Scholar 

  • Lorković ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236

    Article  PubMed  Google Scholar 

  • Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745

    Article  CAS  PubMed  Google Scholar 

  • Sahu BB, Shaw BP (2009) Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC Plant Biol 9:69–94

    Article  PubMed Central  PubMed  Google Scholar 

  • Sasaki K, Kim M, Imai R (2007) Arabidopsis cold shock domain protein2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364:633–638

    Article  CAS  PubMed  Google Scholar 

  • Schomburg FM, Patton DA, Meinke DW, Amasino RM (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13:1427–1436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinozuka H, Hisano H, Yoneyama S, Shimamoto Y, Jones E, Forster J, Yamada T, Kanazawa A (2006) Gene expression and genetic mapping analyses of a perennial ryegrass glycine-rich RNA-binding protein gene suggest a role in cold adaptation. Mol Genet Genomics 275:399–408

    Article  CAS  PubMed  Google Scholar 

  • Vermel M, Guermann B, Delage L, Grienenberger J, Maréchal-Drouard L, Gualberto JM (2002) A family of RRM-type RNA-binding proteins specific to plant mitochondria. Proc Natl Acad Sci 99:5866–5871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vernon LP (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 32(9):1144–1150

    Article  CAS  Google Scholar 

  • Wang C, Washida H, Crofts AJ, Hamada S, Katsube-Tanaka T, Kim D, Choi S, Modi M, Singh S, Okita TW (2008) The cytoplasmic-localized, cytoskeletal-associated RNA binding protein OsTudor-SN: evidence for an essential role in storage protein RNA transport and localization. Plant J 55:443–454

    Article  CAS  PubMed  Google Scholar 

  • Zhang LM, Xiu L, Zhang QM, Chang LW, Ping PS, Yu FZ, Yan X, Zhang H (2001) Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library. Gene 267(2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (KRF) funded by the Ministry of Education, Science and Technology (KRF-2012-001205 and -2012-001273), and the support of Cooperative Research Program for Agriculture Science and Technology Development (Project title: Isolation and functional analyses of novel genes involved in resistance to abiotic stress for improved soybean productivity, Project No. PJ007970), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Heon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayarpadikannan, S., Chung, E.S., So, H.A. et al. Overexpression of SaRBP1 enhances tolerance of Arabidopsis to salt stress. Plant Cell Tiss Organ Cult 118, 327–338 (2014). https://doi.org/10.1007/s11240-014-0485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0485-5

Keywords

Navigation