Skip to main content
Log in

Dependence of UV-B-induced camptothecin production on nitrate reductase-mediated nitric oxide signaling in Camptotheca acuminata suspension cell cultures

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

UV-B irradiation induced production of secondary metabolites in plant cells. However, the mechanisms of UV-B-induced secondary metabolite production remained largely unknown. Here we report that UV-B treatment stimulated nitric oxide (NO) generation and camptothecin (CPT) production in Camptotheca acuminata cells. To investigate the origin of the UV-B-triggered NO and the role of NO in UV-B-induced CPT production, we assayed the responses of nitrate reductase (NR) and NO synthase (NOS) activities of the cells to UV-B exposure and examined the effects of NR and NOS inhibitors on CPT production in UV-B-treated cells. The data showed that UV-B irradiation enhanced NR activities in the cells. Pretreatment with NR inhibitors tungstate and okadaic acid not only suppressed the UV-B-triggered NR activities but also inhibited the UV-B-induced NO generation and CPT production in the cells. In contrast, UV-B irradiation had no effects on NOS activity of the cells and treatment of NOS inhibitor did not suppress UV-B-induced CAT production. Together, the results demonstrated that NR activity was essential for UV-B-triggered NO generation and that NR-mediated NO signaling was involved in UV-B-induced CPT production in C. acuminata cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Behrangi N, Hashemi M, Doustar Y, Borna H (2011) Camptothecins and their novel anticancer properties evaluated by using pass method. Adv Environ Biol 5:2551–2556

    CAS  Google Scholar 

  • Berthke PC, Badger MR, Jone RL (2004) Apoplastic synthesis of nitric oxide by plant tissue. Plant Cell 16:332–341

    Article  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2007) New insight into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  Google Scholar 

  • Binder YK, Peebles CAM, Shanks JV, San KY (2010) The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnol Progr 25(3):861–865

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Gurissem W, Jones RL (2000) Biochemistry and molecular biology of plants, 1st edn. American Society of Plant Physiolgists, USA, pp 1250–1316

    Google Scholar 

  • Cantrel C, Vazquez T, Puyaubert J, Rezé N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189:415–427

    Article  CAS  PubMed  Google Scholar 

  • Clarke GM, Higgins TN (2000) Laboratory investigation of hemoglobinopathies and thalassemias: review and update. Clin Chem 46:1284–1290

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dean JV, Harper JE (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88:389–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interaction between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    Article  CAS  PubMed  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furchgott RF (1995) Special topics: nitric oxide. Annu Rev Physiol 57:659–682

    Article  Google Scholar 

  • Gareth IJ (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  Google Scholar 

  • Gas E, Flores-Perez U, Sauret-Gueto S, Rodriguez-Concepcion M (2009) Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell 21:18–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta KJ, Hincha D, Mur LAJ (2011) NO way to treat a cold. New Phytol 189:360–363

    Article  CAS  PubMed  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Hahlbrock K, Bednarek P, Ciolkowski I, Hamberger B, Heise A, Liedgens H, Logemann E, Nürnberger T, Schmelzer E, Somssich IE, Tan J (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proc Natl Acad Sci USA 100:14569–14576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hao G, Du X, Zhao F, Shi R, Wang J (2009) Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tissue Org Cult 97:175–185

    Article  CAS  Google Scholar 

  • He JM, Xu H, She XP, Song XG, Zhao W (2005) The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct Plant Biol 32:237–247

    Article  CAS  Google Scholar 

  • Hsiao HY, Cheng TJ, Yang GM, Huang IJ, Chen RLC (2007) Determination of camptothecins in DMSO extracts of Nothapodytes foetida by direct injection capillary electrophoresis. Phytochem Anal 19:136–140

    Article  Google Scholar 

  • Jenkins GI, Long JC, Wade HK, Shenton MR, Bibikova TN (2001) UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. New Phytol 151:121–131

    Article  CAS  Google Scholar 

  • Katerova Z, Todorova D, Tasheva K, Sergiev I (2012) Influence of ultraviolet radiation on plant secondary metabolite production. Genet Plant Physiol 2:113–144

    Google Scholar 

  • Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-6 irradiation. Plant Cell 5:171–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lozano-Juste J, Leon J (2010) Enhanced abscissic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol 152:891–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Modolo LV, Cunha FQ, Braga MR, Salgado I (2002) Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the c f. sp. meridionalis elicitor. Plant Physiol 130:1288–1297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Modolo LV, Augusto O, Almeida IMG, Pinto-Maglio CAF, Oliveira HC, Seligman K, Salgado L (2006) Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Sci 171:34–40

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murphy ME, Noack E (1994) Nitric oxide assay using hemoglobin method. Methods Enzymol 233:240–250

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, Ederli L (2009) Ozone and nitric oxide induce cGMP-dependent and-independent transcription of defense genes in tobacco. New Phytol 181:860–870

    Article  CAS  PubMed  Google Scholar 

  • Qiao W, Fan LM (2008) Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol 50:1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Feng H, Wang Y, Zhang M, Cheng J, Wang X, An L (2006) Nitric oxide functions as a signal in ultraviolet-B induced inhibition of pea stems elongation. Plant Sci 170:994–1000

    Article  CAS  Google Scholar 

  • Ramani S, Chelliah J (2007) UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biol 7:1–17

    Article  Google Scholar 

  • Roberts SC, Shuler ML (1997) Large-scale plant cell culture. Curr Opin Biotechnol 8:154–159

    Article  CAS  PubMed  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  • Rozema J, van de Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Sudo H, Yamazaki M (2001) Feasible production of camptothecin by hairy root culture of Opirrhiza pumila. Plant Cell Rep 20:267–271

    Article  CAS  Google Scholar 

  • Salgado I, Modolo LV, Augusto O, Braga MR, Oliveira HC (2007) Mitochondrial nitric oxide synthesis during plant–pathogen interactions: role of nitrate reductase in providing. Plant Cell Monogr 5:237–254

    Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M (1997) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J 11:671–691

    Article  CAS  Google Scholar 

  • Stratmann JW, Stelmach BA, Weiler EW, Ryan CA (2000) UVB/UVA radiation activates a 48 kDa myelin basic protein kinase and potentiates wound signaling in tomato leaves. Photochem Photobiol 71:116–121

    Article  CAS  PubMed  Google Scholar 

  • Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos L. New Phytol 174:322–331

    Article  CAS  PubMed  Google Scholar 

  • Tossi V, Lamattina L, Cassia R (2009) An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytol 181:871–879

    Article  CAS  PubMed  Google Scholar 

  • Verpoorte R, Van der Heijden R, Van Gulik WM, Ten Hoopen HJG (1991) In: Brossi A (ed) The alkaloids. New York: Academic, 40:50–187

  • Wang JW, Wu JY (2004) Involvement of nitric oxide in elicitor-induced defense responses and secondary metabolism of Taxus chinensis cells. Nitric Oxide 11:298–306

    Article  CAS  PubMed  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signaling in plants. Plant, Cell Environ 31:622–631

    Article  CAS  Google Scholar 

  • Xu MJ (2007) Nitric oxide: a potential key point of the signaling network leading to plant secondary metabolite biosynthesis. Progr Nat Sci 17:1397–1404

    Google Scholar 

  • Xu MJ, Dong JF (2005) Elicitor-induced nitric oxide burst is essential for triggering catharanthine synthesis in Catharanthus roseus suspension cells. Appl Microbiol Biotech 67:40–44

    Article  CAS  Google Scholar 

  • Xu MJ, Dong JF (2006) Nitric oxide mediates the fungal elicitor-induced puerarin biosynthesis in Pueraria thomsonii Benth suspension cells through a salicylic acid (SA)-dependent and a jasmonic acid (JA)-dependent signal pathway. Sci China C: Life Sci 49:379–389

    Article  CAS  Google Scholar 

  • Xu MJ, Dong JF, Zhu M (2005) Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic acid-dependent signal pathway. Plant Physiol 139:991–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto A, Katou S, Yoshioka H, Doke N, Kawakita K (2003) Nitrate reductase, a nitric oxide-producing enzyme: induction by pathogen signals. J Gen Plant Pathol 69:218–229

    Article  CAS  Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 355:1477–1488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

  • Zhang M, An L, Feng H, Chen T, Chen K, Liu Y, Tang H, Chang J, Wang X (2003) The cascade mechanisms of nitric oxide as a second messenger of ultraviolet B in inhibiting mesocotyl elongations. Photochem Photobiol 77:219–225

    Article  CAS  PubMed  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng W, Miao K, Zhang Y, Pan S, Zhang M, Jiang H (2009) Nitric oxide mediates the fungal-elicitor-enhanced biosynthesis of antioxidant polyphenols in submerged cultures of Inonotus obliquus. Microbiology 155:3440–3448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Ms Chen Xiaofang for the help of cell culture. This work was financially supported in part by the Natural Science Foundation of China (No. 81072998 and 8137390) and the Natural Science Foundation of Zhejiang Province (No. R2080328).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Su or Maojun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, J., Zhang, J., Li, M. et al. Dependence of UV-B-induced camptothecin production on nitrate reductase-mediated nitric oxide signaling in Camptotheca acuminata suspension cell cultures. Plant Cell Tiss Organ Cult 118, 269–278 (2014). https://doi.org/10.1007/s11240-014-0479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0479-3

Keywords

Navigation