Skip to main content
Log in

Barley doubled-haploid production by uniparental chromosome elimination

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Uniparental elimination of chromosomes, which occurs in interspecific crosses between Hordeum vulgare (cultivated barley) and H. bulbosum (bulbous barley grass), is a process which can be used to produce doubled-haploid barley plants in breeding programs. We review the procedure of haploid production and the mechanism underlying selective elimination of one of the genomes during the early development of species hybrid embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almouslem AB, Bommineni VR, Jauhar PP, Peterson TS, Rao MB (1998) Haploid durum wheat production via hybridization with maize. Crop Sci 38:1080–1087

    Article  Google Scholar 

  • Bennett MD, Barclay IR, Finch RA (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54:175–200

    Article  Google Scholar 

  • Bothmer R, von Flink J, Jacobsen N, Kotimaki M, Landstrom T (1983) Interspecific hybridization with cultivated barley (Hordeum vulgare L.). Hereditas 99:219–244

    Article  Google Scholar 

  • Bothmer R, von Linde-Laursen I, Salomon B (1991) Cytogenetics in hybrids of Hordeum jubatum and H. tetraploidum with cultivated barley (Hordeum vulgare L). Hereditas 114:41–46

    Article  Google Scholar 

  • Boyer HW (1971) DNA restriction and modification mechanisms in bacteria. Annu Rev Microbiol 25:153–176

    Article  CAS  PubMed  Google Scholar 

  • Chen FQ, Hayes PM, Rivin CJ (1991) Wide hybridization of Hordeum vulgare × Zea mays. Genome 34:603–605

    Google Scholar 

  • Cheng BF, Seguin-Swartz G, Somers DJ (2002) Cytogenetic and molecular characterization of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Genome 45:110–115

    Article  CAS  PubMed  Google Scholar 

  • Clulow SA, Baird E, Demaine MJ, Powell W, Waugh R, Wilkinson MJ (1991) Cytological and molecular observations on Solanum phureja induced dihaploid potatoes. Theor Appl Genet 82:545–551

    Article  CAS  Google Scholar 

  • Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382

    Article  Google Scholar 

  • Davies DR (1958) Male parthenogenesis in barley. Heredity 12:493–498

    Article  Google Scholar 

  • Davies DR (1974) Chromosome elimination in inter-specific hybrids. Heredity 32:267–270

    Article  Google Scholar 

  • Devaux P (1987) Comparison of anther culture and Hordeum bulbosum method for the production of doubled haploid in winter barley. 1. Production of green plants. Plant Breed 98:215–219

    Article  Google Scholar 

  • Devaux P (2003) The Hordeum bulbosum (L.) method. In: Maluszynski M, Forster BP, Kasha KJ, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic, The Netherlands, pp 15–19

    Google Scholar 

  • Devaux P, Pickering R (2005) Haploids in the improvement of Poaceae. In: Palmer CE, Kasha KJ, Keller WA (eds) Haploids in crop improvement II, series: biotechnology in agriculture and forestry, vol 56. Springer, Berlin, pp 215–242

    Chapter  Google Scholar 

  • Dogramaci-Altuntepe M, Jauhar PP (2001) Production of durum wheat substitution haploids from durum × maize crosses and their cytological characterization. Genome 44:137–142

    Article  CAS  PubMed  Google Scholar 

  • Eder J, Chalyk S (2002) In vivo haploid induction in maize. Theor Appl Genet 104:703–708

    Article  CAS  PubMed  Google Scholar 

  • Fedak G (1980) Production, morphology and meiosis of reciprocal barley-wheat hybrids. Can J Genet Cytol 22:117–123

    Google Scholar 

  • Fedak G (1983) Haploids in Triticum ventricosum via intergeneric hybridization with Hordeum bulbosum. Can J Genet Cytol 25:104–106

    Google Scholar 

  • Finch RA (1983) Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88:386–393

    Article  Google Scholar 

  • Finch RA, Bennett MD (1982) The mechanism of somatic chromosome elimination in Hordeum. In: Brandham PE, Bennett MD (eds) Kew Chromosome conference II. Springer, London, pp 146–153

    Google Scholar 

  • Forster BP, Dale JE (1983) Effects of parental embryo and endosperm mitotic cycle times on development of hybrids between barley and rye. Ann Bot 52:613–620

    Google Scholar 

  • Fukuda H (2000) Programmed cell death of tracheary elements as paradigm in plants. Plant Mol Biol 44:245–253

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Expl Cell Res 50:151–158

    Article  CAS  Google Scholar 

  • Gernand D, Bruss C, Houben A, Kumlehn J, Matzk F, Prodanovic S, Rubtsova M, Rutten T, Varshney A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17:2431–2438

    Article  CAS  PubMed  Google Scholar 

  • Gernand D, Houben A, Pickering R, Rutten T (2006) Elimination of chromosomes in Hordeum vulgare × H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization. Cytogenet Genome Res 114:169–174

    Article  CAS  PubMed  Google Scholar 

  • Goday C, Ruiz MF (2002) Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies. J Cell Sci 115:4765–4775

    Article  CAS  PubMed  Google Scholar 

  • Gupta SB (1969) Duration of mitotic cycle and regulation of DNA replication in Nicotiana plumbaginifolia and a hybrid derivative of N. tabacum showing chromosome instability. Can J Genet Cytol 11:133–142

    Google Scholar 

  • Heddle JA, Carrano AV (1977) The DNA content of micronuclei induced in mouse bone marrow by gamma-irradation: evidence that miconulcei arise from acentric chromsomal fragments. Mutat Res 44:63–69

    CAS  PubMed  Google Scholar 

  • Ho KM, Kasha KJ (1975) Genetic control of chromosome elimination during haploid formation in barley. Genetics 81:263–275

    CAS  PubMed  Google Scholar 

  • Inagaki M, Snape JW (1982) Frequencies of haploid production in Japanese wheat varieties crossed with tetraploid Hordeum bulbosum L. Jpn J Breed 32:341–347

    Google Scholar 

  • Jensen CJ (1976) Barley monoploids and doubled monoploids: techniques and experience. In: Gaul H (ed) Proc III International Barley Genetics Symposium, Garching, 1975. Verlag Karl Thiemig, München, pp 316–345

    Google Scholar 

  • Jin WW, Dawe RK, Henikoff S, Jiang JM, Melo JR, Nagaki K, Talbert PB (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  CAS  PubMed  Google Scholar 

  • Johnston PA, Farnden KJ, Pickering R, Timmerman-Vaughan GM (2009) Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor Appl Genet 118:1429–1437

    Article  PubMed  Google Scholar 

  • Jorgensen RB, von Bothmer R (1988) Haploids of Hordeum vulgare and H. marinum from crosses between the two species. Hereditas 108:207–212

    Article  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  • Kasha KJ, Reinbergs E (1976) Haploidy and polyploidy and its application in breeding techniques. In: Gaul H (ed) Proc III International Barley Genetics Symposium, Garching, 1975. Verlag Karl Thiemig, München, pp 307–315

    Google Scholar 

  • Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424

    Article  CAS  PubMed  Google Scholar 

  • Kim NS, Armstrong KC, Fedak G, Ho K, Park NI (2002) A microsatellite sequence from the rice blast fungus (Magnaporthe grisea) distinguishes between the centromeres of Hordeum vulgare and H. bulbosum in hybrid plants. Genome 45:165–174

    Article  CAS  PubMed  Google Scholar 

  • Komeda N, Chaudhar HK, Mukai Y, Suzuki G (2007) Cytological evidence for chromosome elimination in wheat × Imperata cylindrica hybrids. Genes Genet Syst 82:241–248

    Article  PubMed  Google Scholar 

  • Kuckuck H (1934) Artkreuzungen bei Gerste. Züchter 6:270–273

    Google Scholar 

  • Lange W (1969) Cytogenetical and embryological research on crosses between Hordeum vulgare and H. bulbosum. Versl landbouwk Onderz 719:162

  • Lange W (1971) Crosses between Hordeum vulgare L and H. bulbosum L.1. Production morphology and meiosis of hybrids, haploids and dihaploids. Euphytica 20:14–29

    Article  Google Scholar 

  • Lange W, Jochemsen G (1976) Karyotypes, nucleoli, and amphiplasty in hybrids between Hordeum vulgare L and Hordeum bulbosum L. Genetica 46:217–233

    Article  Google Scholar 

  • Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28:313–316

    Google Scholar 

  • Laurie DA, Bennett MD (1988) Cytological evidence for fertilization in hexaploid wheat × sorghum crosses. Plant Breed 100:73–82

    Article  Google Scholar 

  • Laurie DA, Bennett MD (1989) The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32:953–961

    Google Scholar 

  • Li MT, Li ZY, Meng JL, Qian W (2004) Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Res 12:417–426

    Article  PubMed  Google Scholar 

  • Linde-Laursen I, von Bothmer R (1993) Aberrant meiotic divisions in a Hordeum lechleri × Hordeum vulgare hybrid. Hereditas 118:145–153

    Article  Google Scholar 

  • Linde-Laursen I, von Bothmer R (1999) Orderly arrangement of the chromosomes within barley genomes of chromosome eliminating Hordeum lechleri × barley hybrids. Genome 42:225–236

    Article  Google Scholar 

  • Matzk F (1996) Hybrids of crosses between oat and andropogoneae or paniceae species. Crop Sci 36:17–21

    Article  Google Scholar 

  • Matzk F, Mahn A (1994) Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed 113:125–129

    Article  Google Scholar 

  • Moav R (1961) Genetic instability in Nicotiana hybrids. 2. Studies of Ws (Pbg) locus of N. plumbaginifolia in N. tabacum nuclei. Genetics 46:1069–1087

    CAS  PubMed  Google Scholar 

  • Mochida K, Tsujimoto H (2001) Production of wheat doubled haploids by pollination with Job’s tears (Coix lachryma jobi. L.). J Hered 92:81–83

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Sasakuma T, Tsujimoto H (2004) Confocal analysis of chromosome behavior in wheat × maize zygotes. Genome 47:199–205

    Article  PubMed  Google Scholar 

  • Molnar-Lang M, Sutka J (1994) The effect of temperature on seed set and embryo development in reciprocal crosses of wheat and barley. Euphytica 78:53–58

    Google Scholar 

  • Ozkan H, Arumuganathan K, Tuna M (2003) Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Hered 94:260–264

    Article  CAS  PubMed  Google Scholar 

  • Pickering RA (1980) Use of the doubled haploid technique in barley breeding at the Welsh Plant Breeding Station. Rep. Welsh Pl Breed Stn for 1979, pp 208-226

  • Pickering RA, Devaux P (1992) Haploid production: approaches and use in plant breeding. In: Shewry PR (ed) Barley: genetics, molecular biology, biotechnology. CAB International, Wallingford, UK, pp 519–547

    Google Scholar 

  • Pickering R, Johnston PA (2005) Recent progress in barley improvement using wild species of Hordeum. Cytogenet Genome Res 109:344–349

    Article  CAS  PubMed  Google Scholar 

  • Pickering RA, Morgan PW (1985) The influence of temperature on chromosome elimination during embryo development in crosses involving Hordeum Spp wheat (Triticum aestivum L) and rye (Secale cereale L.). Theor Appl Genet 70:199–206

    Google Scholar 

  • Rajhathy T, Symko S (1974) High frequency of haploids from crosses of Hordeum lechleri (6x) × Hordeum vulgare (2x) and Hordeum jubatum (4x) × Hordeum bulbosum (2x). Can J Genet Cytol 16:468–472

    Google Scholar 

  • Riera-Lizarazu O, Mujeeb-Kazi A (1993) Polyhaploid production in the Triticeae—wheat × Tripsacum crosses. Crop Sci 33:973–976

    Article  Google Scholar 

  • Riera-Lizarazu O, Phillips RL, Rines HW (1996) Cytological and molecular characterization of oat × maize partial hybrids. Theor Appl Genet 93:123–135

    Article  CAS  Google Scholar 

  • Rines HW, Dahleen LS (1990) Haploid oat plants produced by application of maize pollen to emasculated oat florets. Crop Sci 30:1073–1078

    Article  Google Scholar 

  • Sanei M, Banaei Moghaddam AMB, Dziurlikowska A, Fuchs J, Houben A, Pickering R (2010) Interspecific hybrids of Hordeum marinum ssp. marinum × H. bulbosum are mitotically stable and reveal no gross alterations in chromatin properties. Cytogenet Genome Res 129:110–116

  • Sarrafi A, Alibert G, Amrani N (1994) Haploid regeneration from tetraploid wheat using maize pollen. Genome 37:176–178

    Article  CAS  PubMed  Google Scholar 

  • Schubert I, Oud JL (1997) There is an upper limit of chromosome size for normal development of an organism. Cell 88:515–520

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher-Robinson T, Bennett MD, Finch RA, Smith JB (1987) Genotypic control of centromere positions of parental genomes in Hordeum × Secale hybrid metaphases. J Cell Sci 87:291–304

    Google Scholar 

  • Segui-Simarro JM, Nuez F (2008) Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res 120:358–369

    Article  CAS  PubMed  Google Scholar 

  • Shimizu N, Itoh N, Utiyama H, Wahl GM (1998) Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J Cell Biol 140:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Sitch LA, Snape JW (1986) Doubled haploid production in winter wheat and Triticale genotypes, using the Hordeum bulbosum system. Euphytica 35:1045–1051

    Article  Google Scholar 

  • Subrahmanyam NC (1977) Haploidy from Hordeum interspecific crosses.1. Polyhaploids of H. parodii and H. procerum. Theor Appl Genet 49:209–217

    Article  Google Scholar 

  • Subrahmanyam NC (1982) Species dominance in chromosome elimination in barley hybrids. Curr Sci 51:28–31

    Google Scholar 

  • Subrahmanyam N, Kasha K (1973) Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma 42:111–125

    Article  Google Scholar 

  • Subrahmanyam NC, von Bothmer R (1987) Interspecific hybridization with Hordeum bulbosum and development of hybrids and haploids. Hereditas 106:119–127

    Article  Google Scholar 

  • Suenaga K, Darvey NL, Morshedi AR (1998) Evaluation of teosinte lines as pollen parents for wheat haploid production. Cereal Res Commun 26:119–125

    Google Scholar 

  • Symko S (1969) Haploid barley from crosses of Hordeum bulbosum (2x) by Hordeum vulgare (2x). Can J Genet Cytol 11:602–608

    Google Scholar 

  • Szarka B, Dudits D, Gonter I, Molnar-Lang M, Morocz S (2002) Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants. Theor Appl Genet 105:1–7

    Article  CAS  PubMed  Google Scholar 

  • Szigat G, Pohler W (1982) Hordeum bulbosum × H. vulgare hybrids and their backcrosses with cultivated barley. Cereal Res Commun 10:73–78

    Google Scholar 

  • Taverna SD, Allis CD, Coyne RS (2002) Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell 110:701–711

    Article  CAS  PubMed  Google Scholar 

  • Thomas HM, Pickering RA (1983) Chromosome elimination in Hordeum vulgare × Hordeum bulbosum hybrids. 2. Chromosome behavior in secondary hybrids. Theor Appl Genet 66:141–146

    Article  Google Scholar 

  • Trojak-Goluch A, Berbec A (2003) Cytological investigations of the interspecific hybrids of Nicotiana tabacum L. × N. glauca Grah. J Appl Genet 44:45–54

    PubMed  Google Scholar 

  • Tu Y, Ge X, Li Z, Sun J (2009) Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Ann Bot 103:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Ushiyama T, Kuwabara T, Shimizu T (1991) High-frequency of haploid production of wheat through intergeneric cross with Teosinte. Jpn J Breed 41:353–357

    Google Scholar 

  • Wardrop J, Machray GC, Powell W, Snape J (2002) Constructing plant radiation hybrid panels. Plant J 31:223–228

    Article  CAS  PubMed  Google Scholar 

  • Xu CH, Chen HM, Xia GM, Xiang FN, Zhi DY (2003) Integration of maize nuclear and mitochondrial DNA into the wheat genome through somatic hybridization. Plant Sci 165:1001–1008

    Article  CAS  Google Scholar 

  • Zhang Z, Li Z, Liu Y, Ma K, Qiu F, Xu S (2008) Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep 27:1851–1860

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marie Curie Actions (Nr. 219313) and the Deutsche Forschungsgemeinschaft (HO 1779/7-1/2, HO 1779/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Houben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houben, A., Sanei, M. & Pickering, R. Barley doubled-haploid production by uniparental chromosome elimination. Plant Cell Tiss Organ Cult 104, 321–327 (2011). https://doi.org/10.1007/s11240-010-9856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9856-8

Keywords

Navigation