Skip to main content
Log in

Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants

  • Original Research Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

ADP-glucose pyrophosphorylase (AGPase) plays a key role in regulating starch biosynthesis in cereal seeds and is likely the most important determinant of seed strength. The Escherichia coli mutant glgC gene (glgC16), which encodes a highly active and allosterically insensitive AGPase, was introduced into maize (Zea mays L.) under the control of an endosperm-specific promoter. Developing seeds from transgenic maize plants showed up to 2–4-fold higher levels of AGPase activity in the presence of 5 mM inorganic phosphate (Pi). Transgenic plants with higher cytoplasmic AGPase activity under Pi-inhibitory conditions showed increases (13–25%) in seed weight over the untransformed control. In addition, in all transgenic maize plants, the seeds were fully filled, and the seed number of transgenic plants had no significant difference compared with that of untransformed control. These results indicate that increasing cytoplasmic AGPase activity has a marked effect on sink activity and, in turn, seed weight in transgenic maize plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AGPase:

ADP-glucose pyrophosphorylase

Bt2:

Brittle2

DAP:

Days after self-pollination

3-PGA:

3-phosphoglyceric acid

Pi:

Inorganic phosphate

Sh2:

Shrunken-2

References

  • Akihiro T, Mizuno K, Fujimura T (2005) Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice-cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol 46(6):937–946

    Article  PubMed  CAS  Google Scholar 

  • Bhave MR, Lawrence S, Barton C, Hannah LC (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2(6):581–588

    Article  PubMed  CAS  Google Scholar 

  • Block MD, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Montagu MV, Leemans J (1987). Engineering herbicide resistance in plants by expression of a detoxifying enzyme. Embo J 6(9):2513–2518

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo J, Oamotte M, Sigal N, Sanchez-Medina G, Puig J (1969) Genitic studies of E. coli K12 mutants with alterations in glycogenesis and properties of an altered AGPase. Biochem Biophys Res Commun 34:694–701

    Article  PubMed  CAS  Google Scholar 

  • Crevillen P, Ventriglia T, Pinto F, Orea A, Merida A, Romero JM (2005) Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes. J Biol Chem 280(9):8143–8149

    Article  PubMed  CAS  Google Scholar 

  • Cross JM, Clancy M, Shaw JR, Greene TW, Schmidt RR, Okita TW, Hannah LC (2004) Both subunits of ADP-glucose pyrophosphorylase are regulatory. Plant Physiol 135(1):137–144

    Article  PubMed  CAS  Google Scholar 

  • David MS, Kurt PT, Gerard FB, Preiss J, Kishore GM (1992) Regulation of the amount of starch in plant tissues by ADP glucose purophosphorylase. Science 258(5080):287–292

    Article  Google Scholar 

  • Dean C, van den Elzen P, Tamaki S, Dunsmuir P, Bedbrook J (1988) Differential expression of the eight genes of the petunia ribulose bisphosphate carboxylase small subunit multi-gene family. Embo J 4:3055–3061

    Google Scholar 

  • Denyer K, Dunlap F, Thorbjornsen T, Keeling P, Smith AM (1996) The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol 112(2):779–785

    Article  PubMed  CAS  Google Scholar 

  • Duncan DR, Williams ME, Zehr BE, Widholm JM (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165:322–332

    Article  CAS  Google Scholar 

  • Geigenberger P, Reimholz R, Deiting U, Sonnewald U, Stitt M (1999) Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. Plant J 19(2):119–129

    Article  PubMed  CAS  Google Scholar 

  • Giovinazzo G, Manzocchi LA, Bianchi MW, Coraggio I, Viotti A (1992) Functional analysis of the regulatory region of a zein gene in transiently transformed protoplasts. Plant Mol Biol 19(2):257–263

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Boyer C, Feix G, Hannah LC (1994) Coordinated Transcriptional regulation of storage product genes in the maize endosperm. Plant Physiol 106(2):713–722

    PubMed  CAS  Google Scholar 

  • Giroux MJ, Shaw J, Barry G, Cobb BG, Greene T, Okita T, Hannah LC (1996) A single mutation that increases maize seed weight. Proc Natl Acad Sci USA 93(12):5824–5829

    Article  PubMed  CAS  Google Scholar 

  • Hannah LC, Nelson OE Jr (1976) Characterization of ADP-glucose pyrophosphorylase from shrunken-2 and brittle-2 mutants of maize. Biochem Genet 14(7–8):547–560

    Article  PubMed  CAS  Google Scholar 

  • Herbers K, Sonnewald U (1998) Molecular determinants of sink strength. Curr Opin Plant Biol 1(3):207–216

    Article  PubMed  CAS  Google Scholar 

  • Hwang SK, Salamone PR, Okita TW (2005) Allosteric regulation of the higher plant ADP-glucose pyrophosphorylase is a product of synergy between the two subunits. FEBS Lett 579(5):983–990

    Article  PubMed  CAS  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6(3):215–222

    Article  PubMed  CAS  Google Scholar 

  • Jenner HL, Winning BM, Millar AH, Tomlinson KL, Leaver CJ, Hill SA (2001) NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol 126(3):1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA 102(31):11118–11123

    Article  PubMed  CAS  Google Scholar 

  • Kriz AL, Boston RS, Larkins BA (1987) Structural and transcriptional analysis of DNA sequences flanking genes that encode 19 kilodalton zeins. Mol Gen Genet 207(1):90–98

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Feix G (1983) A zein gene of maize is transcribed from two widely separated promoter regions. Cell 34(3):1015–1022

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Kumar A, Preiss J (1987) Amino acid sequence of an E. coli ADPglucose synthetase allostefric mutants as deduced from the DNA sequence of the glgC gene. Nucleic Acids Res 15:10603

    Article  PubMed  CAS  Google Scholar 

  • Leung P, Lee YM, Greenberg E, Esch K, Boylan S, Preiss J (1986) Cloning and expression of the E. coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacteriol 167(1):82–88

    PubMed  CAS  Google Scholar 

  • Li X, Xing J, Gianfagna TJ, Janes HW (2002) Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits. Plant Sci 162(2):239–244

    Article  PubMed  CAS  Google Scholar 

  • Meyer FD, Smidansky ED, Beecher B, Greene TW, Giroux MJ (2004) The maize Sh2r6hs ADP-glucose pyrophosphorylase large subunit confers enhanced AGP properties in transgenic wheat (Triticum aestivum). Plant Sci 167:899–911

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Sabelli PA, Shewry PR (1995) Southern blotting analysis. In: Jones H (ed) Plant gene transfer and expression protocol, methods in molecular biology, vol. 49. Humana Press, Totowa, pp 161–180

    Chapter  Google Scholar 

  • Sakulsingharoj C, Choi SB, Hwang SK, Edwards GE, Bork J, Meyer CR, Preiss J, Okita TW (2004) Engineering starch biosynthesis for increasing rice seed weight:the role of the cytoplasmic ADP-glucose pyrophosphorylase. Plant Sci 167:1323–1333

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sikka VK, Choi SB, Kavakli IH, Sakulsingharoj C, Gupta S, Ito H, Okita TW (2001) Subsellular comparmentation and allosteric regulation of the rice endosperm ADPglucose pyrophosphorylase. Plant Sci 161:461–468

    Article  CAS  Google Scholar 

  • Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA 99(3):1724–1729

    Article  PubMed  CAS  Google Scholar 

  • Smidansky ED, Martin JM, Hannah LC, Fischer AM, Giroux MJ (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216(4):656–664

    PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Burrell MM, ap Rees T (1996a) Characterization of transgenic potato (Solanum tuberosum) tubers with increased ADPglucose pyrophosphorylase. Biochem J 320(2):487–492

    CAS  Google Scholar 

  • Sweetlove LJ, Burrell MM, ap Rees T (1996b) Starch metabolism in tubers of transgenic potato (Solanum tuberosum) with increased ADPglucose pyrophosphorylase. Biochem J 320(2):493–498

    CAS  Google Scholar 

  • Thorbjornsen T, Villand P, Kleczkowski LA, Olsen OA (1996) A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare). Biochem J 313(1):149–154

    PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Wang GY, Dai JR (2001) Transformation of maize elite inbred lines zong3 and zong31. J Agric Biotechnol 9(4):334–337

    Google Scholar 

  • Zhang R, Wang GY, Zhang XH, Zhao HJ (2001) Agrobacterium tumefaciens mediated maize transformation. J Agric Biotechnol 945–948

Download references

Acknowledgment

This work was supported by the National Special Program for Research and Industrialization of Transgenic Plants (JY03A17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoying Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Chen, X., Wang, J. et al. Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell Tiss Organ Cult 88, 83–92 (2007). https://doi.org/10.1007/s11240-006-9173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-006-9173-4

Keywords

Navigation