Skip to main content
Log in

The role of salicylic acid and carrot embryogenic callus extracts in somatic embryogenesis of naked oat (Avena nuda)

  • Research note
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Enhanced somatic embryogenesis and plant regeneration have been obtained using young leaf bases of naked oat (Avena nuda) as explants by including salicylic acid (SA) and carrot embryogenic callus extracts (CECE) in media. A 5- and 4-fold improvement was achieved in somatic embryogenesis and plant regeneration on the corresponding media supplemented with 0.5 mM SA and CECE as compared to control, respectively. Some physiological and biochemical changes were assayed in both embryogenic callus (EC) and non-embryogenic callus (NEC). The results indicated that superoxide dismutase activity was stimulated and catalases and ascorbate peroxidase activities were inhibited, while the O2 - (superoxide anion) content was reduced and the hydrogen peroxide level was promoted in EC compared with NEC. Reduced malondialdehyde content and relative electrolyte leakage were also detected in EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbic acid

BA:

N6-benzylaminopurine

CAT:

catalases

CECE:

carrot embryogenic callus extracts

2,4-D :

2,4-dichlorophenoxyacetic acid

EC:

embryogenic callus

IAA:

indole-3-acetic acid

KT:

kinetin

MDA:

malondialdehyde

MS:

Murashige and Skoog

NAA:

α-naphthalene acetic acid

NEC:

non-embryogenic callus

REL:

relative electrolyte leakage

ROS:

reactive oxygen species

SA:

salicylic acid

SOD:

superoxide dismutase

References

  • Aebi HE, (1983)Catalase. In: Bergmeyer HU, (ed) Methods of Enzymatic Analyses, Vol. 3 Verlag Chemie, Weinheim pp. 273–282

    Google Scholar 

  • Beers EP, McDowell JM, (2001) Regulation and execution of programmed cell death in response to pathogens, stress and developmental cuesCurr. Opin. Plant Biol. 4: 561–567

    Article  PubMed  CAS  Google Scholar 

  • Bozhkov PV, Filonova LH, Suarez MF, (2005) Programmed cell death in plant embryogenesisCurr. Top. Dev. Biol. 67: 135–79

    PubMed  CAS  Google Scholar 

  • Caliskan M, Turet M, Cuming AC, (2004) Formation of wheat ( Triticum aestivum L.) embryogenic callus involves peroxide-generating germin-like oxalate oxidasePlanta. 219: 132–140

    Article  PubMed  CAS  Google Scholar 

  • Conrath U, Chen Z, Ricigliano JR, Klessig DF, (1995) Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activities in tobacco Proc. Natl. Acad. Sci. USA. 92: 7143–7147

    Article  PubMed  CAS  Google Scholar 

  • Cui K, Xing G, Liu X, Xing G, Wang Y, (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum LPlant Sci. 146: 9–16

    Article  CAS  Google Scholar 

  • Desikan R, Mackerness RS-H, Hancock JT, Neill SJ, (2001) Regulation of the Arabidopsis transcriptome by oxidative stressPlant Physiol. 127: 159–172

    Article  PubMed  CAS  Google Scholar 

  • Doke N, (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall componentsPhysiol. Plant Pathol. 23: 345–357

    Article  CAS  Google Scholar 

  • Durner J, Klessig DF, (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responsesProc. Natl. Acad. Sci. USA. 92: 11312–11316

    Article  PubMed  CAS  Google Scholar 

  • Gless C, Lörz H, Jähne-Gärtner A, (1998) Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segmentsJ. Plant Physiol. 152: 151–157

    CAS  Google Scholar 

  • Guerin TF, Guerin PM, (1993) Recent developments in oat molecular biololgyPlant Mol. Biol. Rep. 11: 65–72

    Google Scholar 

  • Hao L, Xi T, Li XY, Li YY, (1991) Embryogenesis in tissue derived from young leaf of Avena nudaActa Bot. Boreal.-Occident. Sin. 11: 271–275

    Google Scholar 

  • Heath RL, Packer L, (1968) Photoperoxidation in isolated chloroplastsArch. Biochem. Biophys. 125: 189–198

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson MJ, Saxena PK, (1996) Acetylsalicylic acid enhances and synchronizes thidiazuron induced somatic embryogenesis in geranium (Pelargonium × hortorum Baily) tissue culturesPlant Cell Rep. 15: 512–515

    Article  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C, (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance responseCell. 79: 583–593

    Article  PubMed  CAS  Google Scholar 

  • Libik M, Konieczny R, Pater B, lesak IS, Miszalski Z, (2005) Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plantPlant Cell Rep. 23: 834–841

    Article  PubMed  CAS  Google Scholar 

  • Lowry DH, Rosebrough HJ, Farr AL, (1951) Protein measurement with Folin phenol reagentJ. Biol. Chem. 193: 262–275

    Google Scholar 

  • Luo JP, Jiang ST, Pan LJ, (2001) Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production and H2O2-metabolizing enzyme activitiesPlant Sci. 161: 125–132

    Article  CAS  Google Scholar 

  • Marco A de, Roubelakis-Angelakis KA, (1996a) The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplastsPlant Physiol. 110: 137–145

    Google Scholar 

  • Marco A de, Roubelakis-Angelakis KA, (1996b) Hydrogen peroxide plays a bivalent role in the regeneration of protoplastsJ. Plant Physiol. 149: 109–114

    Google Scholar 

  • Misra HP, Fridovich I, (1977) Superoxide dismutase: a photochemical augmentation assayArch. Biochem. Biophys. 181: 308–312

    Article  PubMed  CAS  Google Scholar 

  • Mordhorst AP, Toonen MAJ, de Vries SC, (1997) Plant embryogenesisCrit. Rev. Plant Sci. 16: 535–576

    Article  Google Scholar 

  • Murashige T, Skoog F, (1962) A revised medium for rapid growth and bioassays with tobacco culturesPhysiol. Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT, (2002a) Hydrogen peroxide and nitric oxide as signalling molecules in plantsJ. Exp. Bot. 53: 1237–1247

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT, (2002b) Hydrogen peroxide signallingCurr. Opin. Plant Biol. 5: 388–395

    Article  CAS  Google Scholar 

  • Patterson BD, Macrae EA, Ferguson IB, (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV)Anal. Biochem. 134: 487–492

    Article  Google Scholar 

  • Papadakis AI, Roubelakis-Angelakis KA, (2002) Is oxidative stress responsible for plant protoplast recalcitrance? Plant PhysiolBiochem. 40: 549–559

    CAS  Google Scholar 

  • Papadakis AI, Siminis CI, Roubelakis-Angelakis KA, (1999) Generation of active oxygen species in tobacco and grapevine protoplastsPlant Physiol. 121: 197–205

    Article  PubMed  CAS  Google Scholar 

  • Papadakis AI, Siminis CI, Roubelakis-Angelakis KA, (2001) Reduced antioxidant machinery correlates with suppression of totipotency in plant protoplastsPlant Physiol. 126: 434–444

    Article  PubMed  CAS  Google Scholar 

  • Pius J, George L, Eapen S, Rao PS, (1993) Enhanced plant regeneration in pearl millet (Pennisetum americanum) by ethylene inhibitors and cefotaximePlant Cell, Tiss. Org. Cult. 32: 91–96

    Article  CAS  Google Scholar 

  • Polle A, Chakrabati K, Schürmann W, Rennenber H, (1990) Composition and properties of hydrogen peroxide decomposing systems in extracellular and total extracts from needles of Norway spruce (Picea abies L., Karst.)Plant Physiol. 94: 312–319

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB, (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes: salicylic acid mediated oxidative damage requires H2O2Plant Physiol. 115: 137–149

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, (1992) Role of salicylic acid in plantsAnnu. Rev. Plant Physiol. Plant Mol. Biol. 43: 439–463

    Article  CAS  Google Scholar 

  • Roustan JP, Latche A, Fallot J, (1990) Inhibition of ethylene production and stimulation of carrot somatic embryogenesis by salicylic acidBiol. Plant. 32: 273–276

    CAS  Google Scholar 

  • Siminis CI, Kanellis AK, Roubelakis-Angelakis KA, (1994) Catalase is differentially expressed in dividing and nondividing protoplastsPlant Physiol. 105: 1375–1383

    PubMed  CAS  Google Scholar 

  • Szalai G, Janda T, Paldi E, Szigeti Z, (1996) Role of light in post-chilling symptoms in maizeJ. Plant Physiol. 148: 378–383

    CAS  Google Scholar 

  • Torbert KA, Rines HW, Kaeppler HF, (1998) Genetically engineering elite oat cultivarsCrop Sci. 38: 1685–1687

    Article  Google Scholar 

  • Zheng QS, Ju B, Liang LK, Xiao XH, (2005) Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefacien Plant Cell, Tiss. Org. Cult. 81: 83–90

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Stephen J. Herbert (University of Massachusetts) for comments on the manuscript. This research was supported by a grant from the Natural Science Foundation of Liaoning Province (20021022), P. R. China to L.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, L., Zhou, L., Xu, X. et al. The role of salicylic acid and carrot embryogenic callus extracts in somatic embryogenesis of naked oat (Avena nuda). Plant Cell Tiss Organ Cult 85, 109–113 (2006). https://doi.org/10.1007/s11240-005-9052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-005-9052-4

Keywords

Navigation