Skip to main content
Log in

Reduced anticoagulation variability in patients on warfarin monitored with Fiix-prothrombin time associates with reduced thromboembolism: The Fiix-trial

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Fiix-prothrombin time (Fiix-PT) differs from traditional PT in being affected by reduced factor (F) II or FX only. In the randomized controlled Fiix-trial, patients on warfarin monitored with Fiix-PT (Fiix-warfarin patients) had fewer thromboembolisms (TE), similar major bleeding (MB) and more stable anticoagulation than patients monitored with PT (PT-warfarin patients). In the current Fiix-trial report we analyzed how reduced anticoagulation variability during Fiix-PT monitoring was reflected in patients with TE or bleeding. Data from 1143 randomized patients was used. We analyzed the groups for anticoagulation intensity (time within target range; TTR), international normalized ratio (INR) variability (variance growth rate B1; VGR) and dose adjustment frequency. We assessed how these parameters associated with clinically relevant vascular events (CRVE), ie TE or MB or clinically relevant non-MB. TTR was highest in Fiix-warfarin patients without CRVE (median 82%;IQR 72–91) and lowest in PT-warfarin patients with TE (62%;56–81). VGR was lowest in Fiix-warfarin patients without CRVE (median VGR B1 0.17; 95% CI 0.08–0.38) and with TE (0.20;0.07–0.26) and highest in PT-warfarin patients with TE (0.50;0.27–0.90) or MB (0.59;0.07–1.36). The mean annual dose adjustment frequency was lowest in Fiix-warfarin patients with TE (mean 5.4;95% CI 3.9–7.3) and without CRVE (mean 6.0; 5.8–6.2) and highest in PT-warfarin patients with TE (14.2;12.2–16.3). Frequent dose changes predicted MB in both study arms. Compared to patients monitored with PT, high anticoagulation stability in Fiix-warfarin patients coincided with their low TE rate. Those with bleeding had high variability irrespective of monitoring method. Thus, although further improvements are needed to reduce bleeding, stabilization of anticoagulation by Fiix-PT monitoring associates with reduced TE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Furie B (2013) Do pharmacogenetics have a role in the dosing of vitamin K antagonists? N Engl J Med 369(24):2345–2346. doi:10.1056/NEJMe1313682

    Article  CAS  PubMed  Google Scholar 

  2. Quick AJ, Stanley-Brown M, Bancroft FW (1935) A study of the coagulation defect in hemophilia and in jaundice. Am J Med Sci 190:501–511

    Article  Google Scholar 

  3. Owren PA, Aas K (1951) The control of dicumarol therapy and the quantitative determination of prothrombin and proconvertin. Scand J Clin. Lab Invest 3:201–208

    Article  CAS  Google Scholar 

  4. Kirkwood TB (1983) Calibration of reference thromboplastins and standardisation of the prothrombin time ratio. Thromb Haemost 49(3):238–244

    CAS  PubMed  Google Scholar 

  5. Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G, American College of Chest P (2012) Oral anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 141 (2 Suppl):e44S–88 S. doi:10.1378/chest.11-2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ibrahim S, Jespersen J, Poller L, European, Action, on, Anticoagulation (2013) The clinical evaluation of International Normalized Ratio variability and control in conventional oral anticoagulant administration by use of the variance growth rate. J Thromb Haemost 11(8):1540–1546. doi:10.1111/jth.12322

    Article  CAS  PubMed  Google Scholar 

  7. Zivelin A, Rao LV, Rapaport SI (1993) Mechanism of the anticoagulant effect of warfarin as evaluated in rabbits by selective depression of individual procoagulant vitamin K-dependent clotting factors. J Clin Invest 92:2131–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gudmundsdottir BR, Francis CW, Bjornsdottir AM, Nellbring M, Onundarson PT (2012) Critical role of factors II and X during coumarin anticoagulation and their combined measurement with a new Fiix-prothrombin time. Thromb Res 130(4):674–681

    Article  CAS  PubMed  Google Scholar 

  9. Onundarson PT, Francis CW, Indridason OS, Arnar DO, Bjornsson ES, Magnusson MK, Juliusson SJ, Jensdottir HM, Vidarsson B, Gunnarsson PS, Lund SH, Gudmundsdottir BR (2015) Fiix-prothrombin time versus standard prothrombin time for monitoring of warfarin anticoagulation: a single centre, double-blind, randomised, non-inferiority trial. Lancet Haematol 2(6):e231–e240

    Article  PubMed  Google Scholar 

  10. Olsson SB, Executive Steering Committee of the SIIII (2003) Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. The Lancet 362(9397):1691–1698

  11. Onundarson PT, Arnar DO, Lund SH, Gudmundsdottir BR, Francis CW, Indridason OS (2016) Fiix-prothrombin time monitoring improves warfarin anticoagulation outcome in atrial fibrillation: a systematic review of randomized trials comparing Fiix-warfarin or direct oral anticoagulants to standard PT-warfarin. International journal of laboratory hematology 38(Suppl 1):78–90. doi:10.1111/ijlh.12537

    Article  PubMed  Google Scholar 

  12. Schulman S, Kearon C, Subcommittee on Control of Anticoagulation of the Scientific Standardization Committee of the International Society on Thrombosis and Haemostasis (2005) Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost 3 (4):692–694. doi:10.1111/j.1538-7836.2005.01204.x

    Article  CAS  PubMed  Google Scholar 

  13. Rosendaal FR, Cannegieter SC, van der Meer FJ, Briet E (1993) A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost 69:236–239

    CAS  PubMed  Google Scholar 

  14. Lippi G, Favaloro EJ (2015) Laboratory monitoring of warfarin in the era of direct oral anticoagulants (editorial comment). Lancet Hematol 2(6):e223–e224

    Article  Google Scholar 

  15. Wan Y, Heneghan C, Perera R, Roberts N, Hollowell J, Glasziou P, Bankhead C, Xu Y (2008) Anticoagulation control and prediction of adverse events in patients with atrial fibrillation: a systematic review. Circulation 1 (2):84–91. doi:10.1161/CIRCOUTCOMES.108.796185

    PubMed  Google Scholar 

  16. Björck F, Renlund H, Lip GYH, Wester P, Svensson PJ, Själander A (2016) Outcomes in a warfarin-treated population with atrial fibrillation. JAMA Cardiol 1(2):172. doi:10.1001/jamacardio.2016.0199

    Article  PubMed  Google Scholar 

  17. Wallentin L, Yusuf S, Ezekowitz MD, Alings M, Flather M, Franzosi MG, Pais P, Dans A, Eikelboom J, Oldgren J, Pogue J, Reilly PA, Yang S, Connolly SJ, investigators R-L (2010) Efficacy and safety of dabigatran compared with warfarin at different levels of international normalised ratio control for stroke prevention in atrial fibrillation: an analysis of the RE-LY trial. The Lancet 376(9745):975–983. doi:10.1016/S0140-6736(10)61194-4

    Article  CAS  Google Scholar 

  18. Wallentin L, Lopes RD, Hanna M, Thomas L, Hellkamp A, Nepal S, Hylek EM, Al-Khatib SM, Alexander JH, Alings M, Amerena J, Ansell J, Aylward P, Bartunek J, Commerford P, De Caterina R, Erol C, Harjola VP, Held C, Horowitz JD, Huber K, Husted S, Keltai M, Lanas F, Lisheng L, McMurray JJ, Oh BH, Rosenqvist M, Ruzyllo W, Steg PG, Vinereanu D, Xavier D, Granger CB, Investigators AfRiSOTEiAF (2013) Efficacy and safety of apixaban compared with warfarin at different levels of predicted international normalized ratio control for stroke prevention in atrial fibrillation. Circulation 127(22):2166–2176. doi:10.1161/CIRCULATIONAHA.112.142158

    Article  CAS  PubMed  Google Scholar 

  19. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, Camm AJ, Weitz JI, Lewis BS, Parkhomenko A, Yamashita T, Antman EM (2014) Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. The Lancet 383(9921):955–962. doi:10.1016/S0140-6736(13)62343-0

    Article  CAS  Google Scholar 

  20. Witt DM, Delate T, Clark NP, Martell C, Tran T, Crowther MA, Garcia DA, Ageno W, Hylek EM (2009) Outcomes and predictors of very stable INR control during chronic anticoagulation therapy. Blood 114(5):952–957. doi:10.1182/blood-2009-02-207928

    Article  CAS  PubMed  Google Scholar 

  21. Witt DM, Delate T, Clark NP, Martell C, Tran T, Crowther MA, Garcia DA, Ageno W, Hylek EM (2010) Twelve-month outcomes and predictors of very stable INR control in prevalent warfarin users. J Thromb Haemost 8:744–749

    Article  CAS  PubMed  Google Scholar 

  22. Onundarson PT, Einarsdottir KA, Gudmundsdottir BR (2008) Warfarin anticoagulation intensity in specialist-based and in computer-assisted dosing practice. Int J Lab Hematol 30(5):382–389

    Article  CAS  PubMed  Google Scholar 

  23. Lenz TL, Lenz NJ, Faulkner MA (2004) Potential interactions between exercise and drug therapy. Sports Med 34(5):293–296

    Article  PubMed  Google Scholar 

  24. Shibata Y, Hashimoto H, Kurata C, Ohno R, Kazui T, Takinami M (1998) Influence of physical activity on warfarin therapy. Thromb Haemost 80(1):203–204

    CAS  PubMed  Google Scholar 

  25. Sconce E, Khan T, Mason J, Noble F, Wynne H, Kamali F (2005) Patients with unstable control have a poorer dietary intake of vitamin K compared to patients with stable control of anticoagulation. Thromb Haemost 93(5):872–875. doi:10.1267/THRO05050872

    CAS  PubMed  Google Scholar 

  26. Sconce E, Avery P, Wynne H, Kamali F (2007) Vitamin K supplementation can improve stability of anticoagulation for patients with unexplained variability in response to warfarin. Blood 109(6):2419–2423

    Article  CAS  PubMed  Google Scholar 

  27. Kimmel SE, Chen Z, Price M, Parker CS, Metlay JP, Christie JD, Brensinger CM, Newcomb CW, Samaha FF, Gross R (2007) The influence of patient adherence on anticoagulation control with warfarin: results from the International Normalized Ratio Adherence and Genetics (IN-RANGE) Study. Arch Intern Med 167(3):229–235. doi:10.1001/archinte.167.3.229

    Article  CAS  PubMed  Google Scholar 

  28. Platt AB, Localio AR, Brensinger CM, Cruess DG, Christie JD, Gross R, Parker CS, Price M, Metlay JP, Cohen A, Newcomb CW, Strom BL, Laskin MS, Kimmel SE (2008) Risk factors for nonadherence to warfarin: results from the IN-RANGE study. Pharmacoepidemiol Drug Saf 17(9):853–860. doi:10.1002/pds.1556

    Article  PubMed  PubMed Central  Google Scholar 

  29. Poller L, Shiach CR, MacCallum PK, Johansen AM, Munster AM, Magalhaes A, Jespersen J (1998) Multicentre randomised study of computerised anticoagulant dosage. European concerted action on anticoagulation. The Lancet 352(9139):1505–1509

    Article  CAS  Google Scholar 

  30. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, Kesteven P, Christersson C, Wahlstrom B, Stafberg C, Zhang JE, Leathart JB, Kohnke H, Maitland-van der Zee AH, Williamson PR, Daly AK, Avery P, Kamali F, Wadelius M, Group E-P (2013) A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 369(24):2294–2303. doi:10.1056/NEJMoa1311386

    Article  CAS  PubMed  Google Scholar 

  31. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, Rosenberg YD, Eby CS, Madigan RA, McBane RB, Abdel-Rahman SZ, Stevens SM, Yale S, Mohler ER 3rd, Fang MC, Shah V, Horenstein RB, Limdi NA, Muldowney JA 3rd, Gujral J, Delafontaine P, Desnick RJ, Ortel TL, Billett HH, Pendleton RC, Geller NL, Halperin JL, Goldhaber SZ, Caldwell MD, Califf RM, Ellenberg JH, Investigators C (2013) A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 369(24):2283–2293. doi:10.1056/NEJMoa1310669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verhoef TI, Ragia G, de Boer A, Barallon R, Kolovou G, Kolovou V, Konstantinides S, Le Cessie S, Maltezos E, van der Meer FJ, Redekop WK, Remkes M, Rosendaal FR, van Schie RM, Tavridou A, Tziakas D, Wadelius M, Manolopoulos VG, Maitland-van der Zee AH, Group E-P (2013) A randomized trial of genotype-guided dosing of acenocoumarol and phenprocoumon. N Engl J Med 369(24):2304–2312. doi:10.1056/NEJMoa1311388

    Article  CAS  PubMed  Google Scholar 

  33. Xi M, Beguin S, Hemker HC (1989) The relative importance of the factors II, VII, IX and X for the prothrombinase activity in plasma of orally anticoagulated patients. Thromb Haemost 62:788–791

    CAS  PubMed  Google Scholar 

  34. Furie B, Liebman HA, Blanchard RA, Coleman MS, Kruger SF, Furie BC (1984) Comparison of the native prothrombin antigen and the prothrombin time for monitoring oral anticoagulant therapy. Blood 64:445–451

    CAS  PubMed  Google Scholar 

  35. Furie B, Diuguid CF, Jacobs M, Diuguid DL, Furie BC (1990) Randomized prospective trial comparing the native prothrombin antigen with the prothrombin time for monitoring oral anticoagulant therapy. Blood 75:344–349

    CAS  PubMed  Google Scholar 

  36. Le Heuzey JY, Ammentorp B, Darius H, De Caterina R, Schilling RJ, Schmitt J, Zamorano JL, Kirchhof P (2014) Differences among western European countries in anticoagulation management of atrial fibrillation. Data from the PREFER IN AF registry. Thromb Haemost 111(5):833–841. doi:10.1160/TH13-12-1007

    Article  CAS  PubMed  Google Scholar 

  37. Hart RG, Benavente O, McBride R, Pearce LA (1999) Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: a meta-analysis. Ann Intern Med 131(7):492–501

    Article  CAS  PubMed  Google Scholar 

  38. Jonsson PI, Letertre LR, Juliusson SJ, Gudmundsdottir BR, Francis CW, Onundarson PT (2017) During warfarin induction the anticoagulation level is better reflected by the Fiix-prothrombin time than by the standard prothrombin time. J Thromb Haemost 15:131–139. doi:10.1111/jth.13549

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Fiix trial was partially supported by grants from Innovation Center Iceland, University of Iceland Science Fund, Landspitali Science Fund, The University of Iceland Science Fund and Actavis Inc. The funding sources had no involvement in the design, conduct, analysis or publication of the trial data and had no access to trial data. Pall T. Onundarson and Brynja R. Gudmundsdottir are co-inventors of the Fiix-prothrombin time test that is owned by Fiix Diagnostics Ltd and which has been issued a patent in USA, China and the EU with patent pending status in other areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pall T. Onundarson.

Ethics declarations

Conflict of interest

No other authors have conflicting interests related to this work.

Ethical standards

All procedures performed were in accordance with the ethical standards of the National Bioethics Committee of the Republic of Iceland and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oskarsdóttir, A.R., Gudmundsdottir, B.R., Indridason, O.S. et al. Reduced anticoagulation variability in patients on warfarin monitored with Fiix-prothrombin time associates with reduced thromboembolism: The Fiix-trial. J Thromb Thrombolysis 43, 550–561 (2017). https://doi.org/10.1007/s11239-017-1482-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-017-1482-4

Keywords

Navigation