Skip to main content
Log in

Replication and hematological characterization of human platelet reactivity genetic associations in men from the Caerphilly Prospective Study (CaPS)

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Platelet reactivity, an important factor in hemostasis and chronic disease, has widespread inter-individual variability with a substantial genetic contribution. Previously, our group performed a genome-wide association study of platelet reactivity identifying single nucleotide polymorphisms (SNPs) associated with ADP- and epinephrine- induced aggregation, including SNPs in MRVI1, PIK3CG, JMJD1C, and PEAR1, among others. Here, we assessed the association of these previously identified SNPs with ADP-, thrombin-, and shear- induced platelet aggregation. Additionally, we sought to expand the association of these SNPs with blood cell counts and hemostatic factors. To accomplish this, we examined the association of 12 SNPs with seven platelet reactivity and various hematological measures in 1300 middle-aged men in the Caerphilly Prospective Study. Nine of the examined SNPs showed at least suggestive association with platelet reactivity. The strongest associations were with rs12566888 in PEAR1 to ADP-induced (p = 1.51 × 10−7) and thrombin-induced (p = 1.91 × 10−6) reactivity in platelet rich plasma. Our results indicate PEAR1 functions in a relatively agonist independent manner, possibly through subsequent intracellular propagation of platelet activation. rs10761741 in JMJD1C showed suggestive association with ADP-induced reactivity (p = 1.35 × 10−3), but its strongest associations were with platelet-related cell counts (p = 1.30 × 10−9). These associations indicate variation in JMJD1C influences pathways that modulate platelet development as well as those that affect reactivity. Associations with other blood cell counts and hemostatic factors were generally weaker among the tested SNPs, indicating a specificity of these SNPs’ function to platelets. Future genome-wide analyses will further assess association of these genes and identify new genes important to platelet biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SNP:

Single nucleotide polymorphism

GWAS:

Genome-wide association study

PRP:

Platelet rich plasma

CaPs:

Caerphilly Prospective Study in men

PLT:

Platelet count

MPV:

Mean platelet volume

LTA:

Light transmission aggregometry

WBC:

White blood cell

RBC:

Red blood cell

MCV:

Mean corpuscular volume

MCH:

Mean corpuscular hemoglobin

MAF:

Minor allele frequency

References

  1. Hennekens CH, Dyken ML, Fuster V (1997) Aspirin as a therapeutic agent in cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 96:2751–2753

    Article  CAS  PubMed  Google Scholar 

  2. Johnson AD (2011) The genetics of common variation affecting platelet development, function and pharmaceutical targeting. J Thromb Haemost 9(Suppl 1):246–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Johnson AD, Yanek LR, Chen MH, Faraday N, Larson MG, Tofler G, Lin SJ, Kraja AT, Province MA, Yang Q, Becker DM, O’Donnell CJ, Becker LC (2010) Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat Genet 42:608–613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kauskot A, Vandenbriele C, Louwette S, Gijsbers R, Tousseyn T, Freson K, Verhamme P, Hoylaerts MF (2013) PEAR1 attenuates megakaryopoiesis via control of the PI3K/PTEN pathway. Blood 121:5208–5217

    Article  CAS  PubMed  Google Scholar 

  5. Kauskot A, Di MM, Loyen S, Freson K, Verhamme P, Hoylaerts MF (2012) A novel mechanism of sustained platelet alphaIIbbeta3 activation via PEAR1. Blood 119:4056–4065

    Article  CAS  PubMed  Google Scholar 

  6. Edelstein LC, Luna EJ, Gibson IB, Bray M, Jin Y, Kondkar A, Nagalla S, Hadjout-Rabi N, Smith TC, Covarrubias D, Jones SN, Ahmad F, Stolla M, Kong X, Fang Z, Bergmeier W, Shaw C, Leal SM, Bray PF (2012) Human genome-wide association and mouse knockout approaches identify platelet supervillin as an inhibitor of thrombus formation under shear stress. Circulation 125:2762–2771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. The Caerphilly and Speedwell Collaborative Group (1984) Caerphilly and Speedwell collaborative heart disease studies. The Caerphilly and Speedwell Collaborative Group. J Epidemiol Community Health 38:259–262

    Article  Google Scholar 

  8. Elwood PC, Renaud S, Sharp DS, Beswick AD, O’Brien JR, Yarnell JW (1991) Ischemic heart disease and platelet aggregation. The Caerphilly Collaborative Heart Disease Study. Circulation 83:38–44

    Article  CAS  PubMed  Google Scholar 

  9. Renaud S, Godsey F, Dumont E, Thevenon C, Ortchanian E, Martin JL (1986) Influence of long-term diet modification on platelet function and composition in Moselle farmers. Am J Clin Nutr 43:136–150

    CAS  PubMed  Google Scholar 

  10. Sharp DS, Ben-Shlomo Y, Beswick AD, Andrew ME, Elwood PC (2005) Platelet aggregation in whole blood is a paradoxical predictor of ischaemic stroke: Caerphilly Prospective Study revisited. Platelets 16:320–328

    Article  CAS  PubMed  Google Scholar 

  11. Elwood PC, Beswick AD, Sharp DS, Yarnell JW, Rogers S, Renaud S (1990) Whole blood impedance platelet aggregometry and ischemic heart disease. The Caerphilly Collaborative Heart Disease Study. Arteriosclerosis 10:1032–1036

    Article  CAS  PubMed  Google Scholar 

  12. Beswick AD, O’Brien JR, Limb ES, Yarnell JW, Elwood PC (1994) Shear-induced filter blockage. A population based appraisal of a method for the assessment of platelet, white cell and von Willebrand factor interactions. Platelets 5:186–192

    Article  CAS  PubMed  Google Scholar 

  13. Sweetnam PM, Yarnell JW, Lowe GD, Baker IA, O’Brien JR, Rumley A, Etherington MD, Whitehead PJ, Elwood PC (1998) The relative power of heat-precipitation nephelometric and clottable (Clauss) fibrinogen in the prediction of ischaemic heart disease: the Caerphilly and Speedwell studies. Br J Haematol 100:582–588

    Article  CAS  PubMed  Google Scholar 

  14. Rumley A, Lowe GD, Sweetnam PM, Yarnell JW, Ford RP (1999) Factor VIII, von Willebrand factor and the risk of major ischaemic heart disease in the Caerphilly Heart Study. Br J Haematol 105:110–116

    Article  CAS  PubMed  Google Scholar 

  15. Lowe GD, Yarnell JW, Sweetnam PM, Rumley A, Thomas HF, Elwood PC (1998) Fibrin D-dimer, tissue plasminogen activator, plasminogen activator inhibitor, and the risk of major ischaemic heart disease in the Caerphilly Study. Thromb Haemost 79:129–133

    CAS  PubMed  Google Scholar 

  16. Lowe GD, Rumley A, Sweetnam PM, Yarnell JW, Rumley J (2001) Fibrin D-dimer, markers of coagulation activation and the risk of major ischaemic heart disease in the caerphilly study. Thromb Haemost 86:822–827

    CAS  PubMed  Google Scholar 

  17. Gieger C, Radhakrishnan A, Cvejic A, Tang W, Porcu E, Pistis G, Serbanovic-Canic J, Elling U, Goodall AH, Labrune Y, Lopez LM, Magi R, Meacham S, Okada Y, Pirastu N, Sorice R, Teumer A, Voss K, Zhang W, Ramirez-Solis R, Bis JC, Ellinghaus D, Gogele M, Hottenga JJ, Langenberg C, Kovacs P, O’Reilly PF, Shin SY, Esko T, Hartiala J, Kanoni S, Murgia F, Parsa A, Stephens J, van der Harst P, Ellen van der Schoot C, Allayee H, Attwood A, Balkau B, Bastardot F, Basu S, Baumeister SE, Biino G, Bomba L, Bonnefond A, Cambien F, Chambers JC, Cucca F, D’Adamo P, Davies G, de Boer RA, de Geus EJ, Doring A, Elliott P, Erdmann J, Evans DM, Falchi M, Feng W, Folsom AR, Frazer IH, Gibson QD, Glazer NL, Hammond C, Hartikainen AL, Heckbert SR, Hengstenberg C, Hersch M, Illig T, Loos RJ, Jolley J, Khaw KT, Kuhnel B, Kyrtsonis MC, Lagou V, Lloyd-Jones H, Lumley T, Mangino M, Maschio A, Mateo Leach I, McKnight B, Memari Y, Mitchell BD, Montgomery GW, Nakamura Y, Nauck M, Navis G, Nothlings U, Nolte IM, Porteous DJ, Pouta A, Pramstaller PP, Pullat J, Ring SM, Rotter JI, Ruggiero D, Ruokonen A, Sala C, Samani NJ, Sambrook J, Schlessinger D, Schreiber S, Schunkert H, Scott J, Smith NL, Snieder H, Starr JM, Stumvoll M, Takahashi A, Tang WH, Taylor K, Tenesa A, Lay TS, Tonjes A, Uda M, Ulivi S, van Veldhuisen DJ, Visscher PM, Volker U, Wichmann HE, Wiggins KL, Willemsen G, Yang TP, Hua ZJ, Zitting P, Bradley JR, Dedoussis GV, Gasparini P, Hazen SL, Metspalu A, Pirastu M, Shuldiner AR, van Joost PL, Zwaginga JJ, Boomsma DI, Deary IJ, Franke A, Froguel P, Ganesh SK, Jarvelin MR, Martin NG, Meisinger C, Psaty BM, Spector TD, Wareham NJ, Akkerman JW, Ciullo M, Deloukas P, Greinacher A, Jupe S, Kamatani N, Khadake J, Kooner JS, Penninger J, Prokopenko I, Stemple D, Toniolo D, Wernisch L, Sanna S, Hicks AA, Rendon A, Ferreira MA, Ouwehand WH, Soranzo N (2011) New gene functions in megakaryopoiesis and platelet formation. Nature 480:201–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Qayyum R, Becker LC, Becker DM, Faraday N, Yanek LR, Leal SM, Shaw C, Mathias R, Suktitipat B, Bray PF (2015) Genome-wide association study of platelet aggregation in African Americans. BMC Genet 16:58

    Article  PubMed Central  PubMed  Google Scholar 

  20. Jones CI, Bray S, Garner SF, Stephens J, de Bono B, Angenent WG, Bentley D, Burns P, Coffey A, Deloukas P, Earthrowl M, Farndale RW, Hoylaerts MF, Koch K, Rankin A, Rice CM, Rogers J, Samani NJ, Steward M, Walker A, Watkins NA, Akkerman JW, Dudbridge F, Goodall AH, Ouwehand WH (2009) A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways. Blood 114:1405–1416

    Article  CAS  PubMed  Google Scholar 

  21. Kim Y, Suktitipat B, Yanek LR, Faraday N, Wilson AF, Becker DM, Becker LC, Mathias RA (2013) Targeted deep resequencing identifies coding variants in the PEAR1 gene that play a role in platelet aggregation. PLoS One 8:e64179

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lewis JP, Ryan K, O’Connell JR, Horenstein RB, Damcott CM, Gibson Q, Pollin TI, Mitchell BD, Beitelshees AL, Pakzy R, Tanner K, Parsa A, Tantry US, Bliden KP, Post WS, Faraday N, Herzog W, Gong Y, Pepine CJ, Johnson JA, Gurbel PA, Shuldiner AR (2013) Genetic variation in PEAR1 is associated with platelet aggregation and cardiovascular outcomes. Circ Cardiovasc Genet 6:184–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Faraday N, Yanek LR, Yang XP, Mathias R, Herrera-Galeano JE, Suktitipat B, Qayyum R, Johnson AD, Chen MH, Tofler GH, Ruczinski I, Friedman AD, Gylfason A, Thorsteinsdottir U, Bray PF, O’Donnell CJ, Becker DM, Becker LC (2011) Identification of a specific intronic PEAR1 gene variant associated with greater platelet aggregability and protein expression. Blood 118:3367–3375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wurtz M, Nissen PH, Grove EL, Kristensen SD, Hvas AM (2014) Genetic determinants of on-aspirin platelet reactivity: focus on the influence of PEAR1. PLoS One 9:e111816

    Article  PubMed Central  PubMed  Google Scholar 

  25. Xiang Q, Cui Y, Zhao X, Zhao N (2013) Identification of PEAR1 SNPs and their influences on the variation in prasugrel pharmacodynamics. Pharmacogenomics 14:1179–1189

    Article  CAS  PubMed  Google Scholar 

  26. Sokol J, Biringer K, Skerenova M, Stasko J, Kubisz P, Danko J (2015) Different models of inheritance in selected genes in patients with sticky platelet syndrome and fetal loss. Semin Thromb Hemost 41:330–335

    Article  CAS  PubMed  Google Scholar 

  27. Qayyum R, Snively BM, Ziv E, Nalls MA, Liu Y, Tang W, Yanek LR, Lange L, Evans MK, Ganesh S, Austin MA, Lettre G, Becker DM, Zonderman AB, Singleton AB, Harris TB, Mohler ER, Logsdon BA, Kooperberg C, Folsom AR, Wilson JG, Becker LC, Reiner AP (2012) A meta-analysis and genome-wide association study of platelet count and mean platelet volume in African Americans. PLoS Genet 8:e1002491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Soranzo N, Spector TD, Mangino M, Kuhnel B, Rendon A, Teumer A, Willenborg C, Wright B, Chen L, Li M, Salo P, Voight BF, Burns P, Laskowski RA, Xue Y, Menzel S, Altshuler D, Bradley JR, Bumpstead S, Burnett MS, Devaney J, Doring A, Elosua R, Epstein SE, Erber W, Falchi M, Garner SF, Ghori MJ, Goodall AH, Gwilliam R, Hakonarson HH, Hall AS, Hammond N, Hengstenberg C, Illig T, Konig IR, Knouff CW, McPherson R, Melander O, Mooser V, Nauck M, Nieminen MS, O’Donnell CJ, Peltonen L, Potter SC, Prokisch H, Rader DJ, Rice CM, Roberts R, Salomaa V, Sambrook J, Schreiber S, Schunkert H, Schwartz SM, Serbanovic-Canic J, Sinisalo J, Siscovick DS, Stark K, Surakka I, Stephens J, Thompson JR, Volker U, Volzke H, Watkins NA, Wells GA, Wichmann HE, Van Heel DA, Tyler-Smith C, Thein SL, Kathiresan S, Perola M, Reilly MP, Stewart AF, Erdmann J, Samani NJ, Meisinger C, Greinacher A, Deloukas P, Ouwehand WH, Gieger C (2009) A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41:1182–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Katoh M, Katoh M (2007) Comparative integromics on JMJD1C gene encoding histone demethylase: conserved POU5F1 binding site elucidating mechanism of JMJD1C expression in undifferentiated ES cells and diffuse-type gastric cancer. Int J Oncol 31:219–223

    CAS  PubMed  Google Scholar 

  30. Sroczynska P, Cruickshank VA, Bukowski JP, Miyagi S, Bagger FO, Walfridsson J, Schuster MB, Porse B, Helin K (2014) shRNA screening identifies JMJD1C as being required for leukemia maintenance. Blood 123:1870–1882

    Article  CAS  PubMed  Google Scholar 

  31. Shakya A, Callister C, Goren A, Yosef N, Garg N, Khoddami V, Nix D, Regev A, Tantin D (2015) Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol 35:1014–1025

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wolf SS, Patchev VK, Obendorf M (2007) A novel variant of the putative demethylase gene, s-JMJD1C, is a coactivator of the AR. Arch Biochem Biophys 460:56–66

    Article  CAS  PubMed  Google Scholar 

  33. Hirsch E, Bosco O, Tropel P, Laffargue M, Calvez R, Altruda F, Wymann M, Montrucchio G (2001) Resistance to thromboembolism in PI3Kgamma-deficient mice. FASEB J 15:2019–2021

    CAS  PubMed  Google Scholar 

  34. Hirsch E, Lembo G, Montrucchio G, Rommel C, Costa C, Barberis L (2006) Signaling through PI3Kgamma: a common platform for leukocyte, platelet and cardiovascular stress sensing. Thromb Haemost 95:29–35

    CAS  PubMed  Google Scholar 

  35. Lian L, Wang Y, Draznin J, Eslin D, Bennett JS, Poncz M, Wu D, Abrams CS (2005) The relative role of PLCbeta and PI3Kgamma in platelet activation. Blood 106:110–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Satyanarayana A, Gudmundsson KO, Chen X, Coppola V, Tessarollo L, Keller JR, Hou SX (2010) RapGEF2 is essential for embryonic hematopoiesis but dispensable for adult hematopoiesis. Blood 116:2921–2931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the subjects who volunteered their time and effort as well as the National Heart, Lung and Blood Institute Intramural Research Program funding to Dr. Chris J. O’Donnell for the support of SNP genotyping. The Caerphilly Prospective Study was undertaken by the former MRC Epidemiology Unit (South Wales) and was funded by the Medical Research Council of the United Kingdom. The Caerphilly DNA Bank was established by an MRC Grant (G9824960).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Johnson.

Ethics declarations

Conflicts of interests

The authors state that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eicher, J.D., Xue, L., Ben-Shlomo, Y. et al. Replication and hematological characterization of human platelet reactivity genetic associations in men from the Caerphilly Prospective Study (CaPS). J Thromb Thrombolysis 41, 343–350 (2016). https://doi.org/10.1007/s11239-015-1290-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-015-1290-7

Keywords

Navigation