Skip to main content

Advertisement

Log in

Thrombin generation and atherosclerosis

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Atherosclerosis is a major cause of mortality worldwide. The important role inflammation plays in atherosclerosis is evident through the participation of inflammatory cells in the development and progression of the disease. Thrombin is the central protease of the coagulation cascade, involved in the formation of a hemostatic plug to avoid severe bleeding. In addition, thrombin is a key factor in regulating inflammatory processes, signaling through protease activated receptors. We propose that thrombin may be a relevant factor in the atherosclerosis coagulation-inflammation axis. Human histological data show abundant coagulation activity within atherosclerotic lesions with thrombin activity being related to atherosclerotic plaque development and (in)stability. Animal studies establish that the generated thrombin level relates to progression of atherosclerosis, with hypercoagulability producing advanced atherosclerosis in mice with an Apolipoprotein E-deficient (ApoE−/−) background. Several studies show that administration of direct oral anticoagulants, like dabigatran and rivaroxaban, attenuate atherosclerosis development in ApoE−/− mice. In this review we explore several mechanisms by which thrombin may operate in modifying the chronic process of atherosclerosis. One of the key elements may be the conversion of thrombin, from a physiological regulator of hemostasis towards an inflammation-mediator under pathophysiological conditions, contributing to a switch in the thrombin-activated protein C (APC) regulation. The ongoing inflammatory activity, indicated by the activation of pro-inflammatory cytokines, neutrophils and neutrophil extracellular traps, drive thrombin generation, while diminishing APC formation. The net result is accelerated pro-inflammatory and pro-thrombotic changes in blood and in the vessel wall. We conclude that these atherogenic influences of thrombin may be clinically relevant in the long term. Further the treatment with long-term anticoagulant therapy deserves further attention as to its potential, vascular side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325. doi:10.1038/nature10146

    Article  CAS  PubMed  Google Scholar 

  2. Ionita MG, van den Borne P, Catanzariti LM et al (2010) High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol 30:1842–1848. doi:10.1161/ATVBAHA.110.209296

    Article  CAS  PubMed  Google Scholar 

  3. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126. doi:10.1056/NEJM199901143400207

    Article  CAS  PubMed  Google Scholar 

  4. Lahoute C, Herbin O, Mallat Z, Tedgui A (2011) Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol 8:348–358. doi:10.1038/nrcardio.2011.62

    Article  CAS  PubMed  Google Scholar 

  5. Cybulsky MI, Jongstra-Bilen J (2010) Resident intimal dendritic cells and the initiation of atherosclerosis. Curr Opin Lipidol 21:397–403. doi:10.1097/MOL.0b013e32833ded96

    Article  CAS  PubMed  Google Scholar 

  6. Hansson GKG (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695. doi:10.1056/NEJMra043430

    Article  CAS  PubMed  Google Scholar 

  7. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581. doi:10.1152/physrev.00024.2005

    Article  CAS  PubMed  Google Scholar 

  8. Borissoff JI, Spronk HMH, Heeneman S, ten Cate H (2009) Is thrombin a key player in the “coagulation-atherogenesis” maze? Cardiovasc Res 82:392–403. doi:10.1093/cvr/cvp066

    Article  CAS  PubMed  Google Scholar 

  9. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815. doi:10.1038/nri2415

    Article  CAS  PubMed  Google Scholar 

  10. Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3:1800–1814. doi:10.1111/j.1538-7836.2005.01377.x

    Article  CAS  PubMed  Google Scholar 

  11. Kaplan ZS, Jackson SP (2011) The role of platelets in atherothrombosis. Hematol Am Soc Hematol Educ Program 2011:51–61. doi:10.1182/asheducation-2011.1.51

    Article  Google Scholar 

  12. Khrenov AV, Ananyeva NM, Griffin JH, Saenko EL (2002) Coagulation pathways in atherothrombosis. Trends Cardiovasc Med 12:317–324

    Article  CAS  PubMed  Google Scholar 

  13. Borissoff JI, Spronk HMH, ten Cate H (2011) The hemostatic system as a modulator of atherosclerosis. N Engl J Med 364:1746–1760. doi:10.1056/NEJMra1011670

    Article  CAS  PubMed  Google Scholar 

  14. Hackeng TM, Maurissen LFA, Castoldi E, Rosing J (2009) Regulation of TFPI function by protein S. J Thromb Haemost 7(Suppl 1):165–168. doi:10.1111/j.1538-7836.2009.03363.x

    Article  CAS  PubMed  Google Scholar 

  15. Lane DA, Philippou H, Huntington JA (2005) Directing thrombin. Blood 106:2605–2612. doi:10.1182/blood-2005-04-1710

    Article  CAS  PubMed  Google Scholar 

  16. Engelmann B, Massberg S (2013) Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 13:34–45. doi:10.1038/nri3345

    Article  CAS  PubMed  Google Scholar 

  17. Lipinski S, Bremer L, Lammers T et al (2011) Coagulation and inflammation. Hämostaseologie 31:94–104. doi:10.5482/ha-1134

    Article  CAS  PubMed  Google Scholar 

  18. Hayden MS, West AP, Ghosh S (2006) NF-kappaB and the immune response. Oncogene 25:6758–6780. doi:10.1038/sj.onc.1209943

    Article  CAS  PubMed  Google Scholar 

  19. Bajaj MS, Ghosh M, Bajaj SP (2007) Fibronectin-adherent monocytes express tissue factor and tissue factor pathway inhibitor whereas endotoxin-stimulated monocytes primarily express tissue factor: physiologic and pathologic implications. J Thromb Haemost 5:1493–1499. doi:10.1111/j.1538-7836.2007.02604.x

    Article  CAS  PubMed  Google Scholar 

  20. De Jonge E, Dekkers PE, Creasey AA et al (2000) Tissue factor pathway inhibitor dose-dependently inhibits coagulation activation without influencing the fibrinolytic and cytokine response during human endotoxemia. Blood 95:1124–1129

    PubMed  Google Scholar 

  21. O’Brien M (2012) The reciprocal relationship between inflammation and coagulation. Top Companion Animal Med 27:46–52. doi:10.1053/j.tcam.2012.06.003

    Article  Google Scholar 

  22. Antoniak S, Owens AP, Baunacke M et al (2013) PAR-1 contributes to the innate immune response during viral infection. J Clin Invest 123:1310–1322. doi:10.1172/JCI66125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Webb JH, Blom AM, Dahlbäck B (2002) Vitamin K-dependent protein S localizing complement regulator C4b-binding protein to the surface of apoptotic cells. J Immunol 169:2580–2586

    CAS  PubMed  Google Scholar 

  24. Esmon CT, Xu J, Lupu F (2011) Innate immunity and coagulation. J Thromb Haemost 9(Suppl 1):182–188. doi:10.1111/j.1538-7836.2011.04323.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Martinod K, Demers M, Fuchs TA et al (2013) Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci USA 110:8674–8679. doi:10.1073/pnas.1301059110

    Article  CAS  PubMed  Google Scholar 

  26. Kannemeier C, Shibamiya A, Nakazawa F et al (2007) Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA 104:6388–6393. doi:10.1073/pnas.0608647104

    Article  CAS  PubMed  Google Scholar 

  27. Borissoff JI, Joosen IA, Versteylen MO et al (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. doi:10.1161/ATVBAHA.113.301627

    PubMed  Google Scholar 

  28. Borissoff JI, ten Cate H (2011) From neutrophil extracellular traps release to thrombosis: an overshooting host-defense mechanism? J Thromb Haemost 9:1791–1794. doi:10.1111/j.1538-7836.2011.04425.x

    Article  CAS  PubMed  Google Scholar 

  29. Fong IW, Chiu B, Viira E et al (1999) De Novo induction of atherosclerosis by Chlamydia pneumoniae in a rabbit model. Infect Immun 67:6048–6055

    CAS  PubMed Central  PubMed  Google Scholar 

  30. de Kruif MD, van Gorp ECM, Keller TT et al (2005) Chlamydia pneumoniae infections in mouse models: relevance for atherosclerosis research. Cardiovasc Res 65:317–327. doi:10.1016/j.cardiores.2004.09.031

    Article  PubMed  Google Scholar 

  31. Ezzahiri R, Stassen FRM, Kurvers HAJM et al (2003) Chlamydia pneumoniae infection induces an unstable atherosclerotic plaque phenotype in LDL-receptor, ApoE double knockout mice. Eur J Vasc Endovasc Surg 26:88–95

    Article  CAS  PubMed  Google Scholar 

  32. Dechend R, Maass M, Gieffers J et al (1999) Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF-kappaB and induces tissue factor and PAI-1 expression: a potential link to accelerated arteriosclerosis. Circulation 100:1369–1373

    Article  CAS  PubMed  Google Scholar 

  33. Kilinc E, Van Oerle R, Borissoff JI et al (2011) Factor XII activation is essential to sustain the procoagulant effects of particulate matter. J Thromb Haemost 9:1359–1367. doi:10.1111/j.1538-7836.2011.04280.x

    Article  CAS  PubMed  Google Scholar 

  34. Hoffmann B, Moebus S, Möhlenkamp S et al (2007) Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 116:489–496. doi:10.1161/CIRCULATIONAHA.107.693622

    Article  CAS  PubMed  Google Scholar 

  35. Victor VM, Rocha M, Solá E et al (2009) Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des 15:2988–3002

    Article  CAS  PubMed  Google Scholar 

  36. Kilinc E, Rudež G, Spronk H (2011) Cardiovascular effects of inhaled ultrafine and nano-sized particles. Wiley, Hoboken

    Google Scholar 

  37. Major CD, Santulli RJ, Derian CK, Andrade-Gordon P (2003) Extracellular mediators in atherosclerosis and thrombosis: lessons from thrombin receptor knockout mice. Arterioscler Thromb Vasc Biol 23:931–939. doi:10.1161/01.ATV.0000070100.47907.26

    Article  CAS  PubMed  Google Scholar 

  38. Ma L, Dorling A (2012) The roles of thrombin and protease-activated receptors in inflammation. Semin Immunopathol 34:63–72. doi:10.1007/s00281-011-0281-9

    Article  CAS  PubMed  Google Scholar 

  39. Lin H, Trejo J (2013) Transactivation of the PAR1-PAR2 heterodimer by thrombin elicits β-arrestin-mediated endosomal signaling. J Biol Chem 288:11203–11215. doi:10.1074/jbc.M112.439950

    Article  CAS  PubMed  Google Scholar 

  40. Seasholtz TM, Majumdar M, Kaplan DD, Brown JH (1999) Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circ Res 84:1186–1193

    Article  CAS  PubMed  Google Scholar 

  41. Patterson C, Stouffer GA, Madamanchi N, Runge MS (2001) New tricks for old dogs: nonthrombotic effects of thrombin in vessel wall biology. Circ Res 88:987–997

    Article  CAS  PubMed  Google Scholar 

  42. McCoy KL, Gyoneva S, Vellano CP et al (2012) Protease-activated receptor 1 (PAR1) coupling to G(q/11) but not to G(i/o) or G(12/13) is mediated by discrete amino acids within the receptor second intracellular loop. Cell Signal 24:1351–1360. doi:10.1016/j.cellsig.2012.01.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hamilton JR, Cornelissen I, Mountford JK, Coughlin SR (2009) Atherosclerosis proceeds independently of thrombin-induced platelet activation in ApoE−/− mice. Atherosclerosis 205:427–432. doi:10.1016/j.atherosclerosis.2009.01.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Chen D, Dorling A (2009) Critical roles for thrombin in acute and chronic inflammation. J Thromb Haemost 7(Suppl 1):122–126. doi:10.1111/j.1538-7836.2009.03413.x

    Article  CAS  PubMed  Google Scholar 

  45. Feistritzer C, Lenta R, Riewald M (2005) Protease-activated receptors-1 and -2 can mediate endothelial barrier protection: role in factor Xa signaling. J Thromb Haemost 3:2798–2805. doi:10.1111/j.1538-7836.2005.01610.x

    Article  CAS  PubMed  Google Scholar 

  46. Esmon CT (2012) Protein C anticoagulant system—anti-inflammatory effects. Semin Immunopathol 34:127–132. doi:10.1007/s00281-011-0284-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bouwens EAM, Stavenuiter F, Mosnier LO (2013) Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 11(Suppl 1):242–253. doi:10.1111/jth.12247

    Article  PubMed  Google Scholar 

  48. Matsumoto K, Yano Y, Gabazza EC et al (2007) Inverse correlation between activated protein C generation and carotid atherosclerosis in Type 2 diabetic patients. Diabet Med 24:1322–1328. doi:10.1111/j.1464-5491.2007.02289.x

    Article  CAS  PubMed  Google Scholar 

  49. Wilcox JN, Noguchi S, Casanova JR, Rasmussen ME (2001) Extrahepatic synthesis of FVII in human atheroma and smooth muscle cells in vitro. Ann N Y Acad Sci 947:433–438

    Article  CAS  PubMed  Google Scholar 

  50. Borissoff JI, Heeneman S, Kilinc E et al (2010) Early atherosclerosis exhibits an enhanced procoagulant state. Circulation 122:821–830. doi:10.1161/CIRCULATIONAHA.109.907121

    Article  CAS  PubMed  Google Scholar 

  51. Loeffen R, Spronk HMH, ten Cate H (2012) The impact of blood coagulability on atherosclerosis and cardiovascular disease. J Thromb Haemost 10:1207–1216. doi:10.1111/j.1538-7836.2012.04782.x

    Article  CAS  PubMed  Google Scholar 

  52. Borissoff JI, Joosen IA, Versteylen MO et al (2012) Accelerated in vivo thrombin formation independently predicts the presence and severity of CT angiographic coronary atherosclerosis. JCMG 5:1201–1210. doi:10.1016/j.jcmg.2012.01.023

    Google Scholar 

  53. Konings J, Govers-Riemslag JWP, Philippou H et al (2011) Factor XIIa regulates the structure of the fibrin clot independently of thrombin generation through direct interaction with fibrin. Blood 118:3942–3951. doi:10.1182/blood-2011-03-339572

    Article  CAS  PubMed  Google Scholar 

  54. Nelken NA, Soifer SJ, O’Keefe J et al (1992) Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest 90:1614–1621. doi:10.1172/JCI116031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Colotta F, Sciacca FL, Sironi M et al (1994) Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin. Am J Pathol 144:975–985

    CAS  PubMed  Google Scholar 

  56. Gu L, Okada Y, Clinton SK et al (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281

    Article  CAS  PubMed  Google Scholar 

  57. Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897. doi:10.1038/29788

    Article  CAS  PubMed  Google Scholar 

  58. Minami T, Sugiyama A, Wu S-Q et al (2004) Thrombin and phenotypic modulation of the endothelium. Arterioscler Thromb Vasc Biol 24:41–53. doi:10.1161/01.ATV.0000099880.09014.7D

    Article  CAS  PubMed  Google Scholar 

  59. Naldini A, Carney DH, Pucci A et al (2000) Thrombin regulates the expression of proangiogenic cytokines via proteolytic activation of protease-activated receptor-1. Gen Pharmacol 35:255–259

    Article  CAS  PubMed  Google Scholar 

  60. Shpacovitch VM, Brzoska T, Buddenkotte J et al (2002) Agonists of proteinase-activated receptor 2 induce cytokine release and activation of nuclear transcription factor kappaB in human dermal microvascular endothelial cells. J Invest Dermatol 118:380–385. doi:10.1046/j.0022-202x.2001.01658.x

    Article  CAS  PubMed  Google Scholar 

  61. Dabbagh K, Laurent GJ, McAnulty RJ, Chambers RC (1998) Thrombin stimulates smooth muscle cell procollagen synthesis and mRNA levels via a PAR-1 mediated mechanism. Thromb Haemost 79:405–409

    CAS  PubMed  Google Scholar 

  62. Kastl SP, Speidl WS, Katsaros KM et al (2009) Thrombin induces the expression of oncostatin M via AP-1 activation in human macrophages: a link between coagulation and inflammation. Blood 114:2812–2818. doi:10.1182/blood-2009-01-200915

    Article  CAS  PubMed  Google Scholar 

  63. Levi M, van der Poll T (2008) The role of natural anticoagulants in the pathogenesis and management of systemic activation of coagulation and inflammation in critically ill patients. Semin Thromb Hemost 34:459–468. doi:10.1055/s-0028-1092876

    Article  CAS  PubMed  Google Scholar 

  64. Borissoff JI, Otten JJT, Heeneman S et al (2013) Genetic and pharmacological modifications of thrombin formation in apolipoprotein E-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner. PLoS ONE 8:e55784. doi:10.1371/journal.pone.0055784.s008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Khallou-Laschet J, Caligiuri G, Tupin E et al (2005) Role of the intrinsic coagulation pathway in atherogenesis assessed in hemophilic apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 25:e123–e126. doi:10.1161/01.ATV.0000171995.22284.9a

    Article  CAS  PubMed  Google Scholar 

  66. Tilley RER, Pedersen BB, Pawlinski RR et al (2006) Atherosclerosis in mice is not affected by a reduction in tissue factor expression. Arterioscler Thromb Vasc Biol 26:555–562. doi:10.1161/01.ATV.0000202028.62414.3c

    Article  CAS  PubMed  Google Scholar 

  67. Vicente CP, He L, Tollefsen DM (2007) Accelerated atherogenesis and neointima formation in heparin cofactor II deficient mice. Blood 110:4261–4267. doi:10.1182/blood-2007-04-086611

    Article  CAS  PubMed  Google Scholar 

  68. Westrick RJ, Bodary PF, Xu Z et al (2001) Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation 103:3044–3046

    Article  CAS  PubMed  Google Scholar 

  69. Bea F, Kreuzer J, Preusch M et al (2006) Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 26:2787–2792. doi:10.1161/01.ATV.0000246797.05781.ad

    Article  CAS  PubMed  Google Scholar 

  70. Burghaus R, Coboeken K, Gaub T et al (2011) Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation. PLoS ONE 6:e17626. doi:10.1371/journal.pone.0017626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Zhou Q, Bea F, Preusch M et al (2011) Evaluation of plaque stability of advanced atherosclerotic lesions in apo E-deficient mice after treatment with the oral factor Xa inhibitor rivaroxaban. Mediators Inflamm 2011:432080. doi:10.1155/2011/432080

    Article  PubMed Central  PubMed  Google Scholar 

  72. Connolly SJ, Ezekowitz MD, Yusuf S et al (2009) Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 361:1139–1151. doi:10.1056/NEJMoa0905561

    Article  CAS  PubMed  Google Scholar 

  73. Mega JL, Braunwald E, Wiviott SD et al (2012) Rivaroxaban in patients with a recent acute coronary syndrome. N Engl J Med 366:9–19. doi:10.1056/NEJMoa1112277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

HtC is a Fellow of the Gutenberg Research Foundation, Gutenberg University, Mainz, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri M. H. Spronk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalz, J., ten Cate, H. & Spronk, H.M.H. Thrombin generation and atherosclerosis. J Thromb Thrombolysis 37, 45–55 (2014). https://doi.org/10.1007/s11239-013-1026-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-013-1026-5

Keywords

Navigation