Skip to main content

Advertisement

Log in

Activation of mitogen activated protein kinases in post-infarcted patients

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Activation of mitogen-activated protein kinases (MAPKs) signaling cascade are important pathophysiologic regulators during the development of acute myocardial infarction (AMI). In present study, we designed to monitor the activity of these MAPKs in Iranian patients with AMI comparing with controls. The degree of activation (phosphorylation) of p38 kinase, p44/42 extracellular regulated kinase, and c-Jun N-terminal kinase (JNK1/2) and their corresponding activity levels were analyzed in 258 patients with AMI and 250 normal subjects. The expression of p38α mRNA was determined. These analysis were carried out immediately and 12 h after AMI. Activity of p38 and JNK1/2 MAPKs were significantly increased in patients with AMI than controls immediately after infarction. These activities were reduced during 12 h after AMI. However, there were no statistically differences in activation and activity of p44/42 in the patients and controls. The mRNA expression of p38α was increased in the patients comparing with controls. Results of this study indicate that these MAPKs signaling pathway might be activated by AMI which signal transduction involves kinase phosphorylation and play important roles in their activity. Elevated activity of p38 and JNK1/2 MAPKs suggests that they may potentially play significant roles in AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hunter T (2000) Signaling-2000 and beyond. Cell 100:113–127

    Article  PubMed  CAS  Google Scholar 

  2. Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW II (1998) Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 95:10140–10145

    Article  PubMed  CAS  Google Scholar 

  3. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677

    PubMed  CAS  Google Scholar 

  4. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    PubMed  CAS  Google Scholar 

  5. Cook SA, Sugden PH, Clerk A (1999) Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 31:1429–1434

    Article  PubMed  CAS  Google Scholar 

  6. See F, Kompa A, Krum H (2004) p38 map kinase as a therapeutic target in cardiovascular disease. Drug Discov Today Ther Strateg 1:149–154

    Article  CAS  Google Scholar 

  7. Sugden PH, Clerk A (1998) “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83:345–352

    PubMed  CAS  Google Scholar 

  8. Barancik M, Htun P, Strohm C, Kilian S, Schaper W (2000) Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J Cardiovasc Pharmacol 35:474–483

    Article  PubMed  CAS  Google Scholar 

  9. Fischer TA, Ludwig S, Flory E, Gambaryan S, Singh K, Finn P, Pfeffer MA, Kelly RA, Pfeffer JM (2001) Activation of cardiac c-Jun NH(2)-terminal kinases and p38-mitogen-activated protein kinases with abrupt changes in hemodynamic load. Hypertension 37:1222–1228

    PubMed  CAS  Google Scholar 

  10. Linke A, Recchia F, Zhang X, Hintze TH (2003) Acute and chronic endothelial dysfunction: implications for the development of heart failure. Heart Fail Rev 8:87–97

    Article  PubMed  CAS  Google Scholar 

  11. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H (2001) Ask1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222–228

    Article  PubMed  CAS  Google Scholar 

  12. Desbiens KM, Deschesnes RG, Labrie MM, Desfossés Y, Lambert H, Landry J, Bellmann K (2003) C-Myc potentiates the mitochondrial pathway of apoptosis by acting upstream of apoptosis signal-regulating kinase 1 (Ask1) in the p38 signalling cascade. Biochem J 372:631–641

    Article  PubMed  CAS  Google Scholar 

  13. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, Yazaki Y (1997) Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 100:1813–1821

    Article  PubMed  CAS  Google Scholar 

  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  15. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  17. Flesch M, Margulies KB, Mochmann HC, Engel D, Sivasubramanian N, Mann DL (2001) Differential regulation of mitogen-activated protein kinases in the failing human heart in response to mechanical unloading. Circulation 104:2273–2276

    Article  PubMed  CAS  Google Scholar 

  18. Hale KK, Trollinger D, Rihanek M, Manthey CL (1999) Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J Immunol 162:4246–4252

    PubMed  CAS  Google Scholar 

  19. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  20. Ravingerová T, Barančík M, Strnisková M (2003) Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem 247:127–138

    Article  PubMed  Google Scholar 

  21. Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ (2005) Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction. J Mol Cell Cardiol 38:617–623

    Article  PubMed  CAS  Google Scholar 

  22. Yoshida K, Yoshiyama M, Omura T, Nakamura Y, Kim S, Takeuchi K, Iwao H, Yoshikawa J (2001) Activation of mitogen-activated protein kinases in the non-ischemic myocardium of an acute myocardial infarction in rats. Jpn Circ J 65:808–814

    Article  PubMed  CAS  Google Scholar 

  23. Clerk A, Michael A, Sugden PH (1998) Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? J Cell Biol 142:523–535

    Article  PubMed  CAS  Google Scholar 

  24. Nemoto S, Sheng Z, Lin A (1998) Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol Cell Biol 18:3518–3526

    PubMed  CAS  Google Scholar 

  25. Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, Chien KR (1998) Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273:2161–2168

    Article  PubMed  CAS  Google Scholar 

  26. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Keys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746

    Article  PubMed  CAS  Google Scholar 

  27. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem 271:17920–17926

    Article  PubMed  CAS  Google Scholar 

  28. Stein B, Yang MX, Young DB, Janknecht R, Hunter T, Murray BW, Barbosa MS (1997) P38-2, a novel mitogen-activated protein kinase with distinct properties. J Biol Chem 272:19509–19517

    Article  PubMed  CAS  Google Scholar 

  29. Lechner C, Zahalka MA, Giot JF, Møller NP, Ullrich A (1996) ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci USA 93:4355–4359

    Article  PubMed  CAS  Google Scholar 

  30. Li Z, Jiang Y, Ulevitch RJ, Han J (1996) The primary structure of p38 gamma: a new member of p38 group of map kinases. Biochem Biophys Res Commun 228:334–340

    Article  PubMed  CAS  Google Scholar 

  31. Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY, Mantlo N, Lichenstein HS, Zukowski M, Yao Z (1997) Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem 272:23668–23674

    Article  PubMed  CAS  Google Scholar 

  32. Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Di Padova F, Ulevitch RJ, Han J (1997) Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38 delta. J Biol Chem 272:30122–30128

    Article  PubMed  CAS  Google Scholar 

  33. Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF, Hai T, Whelan J (1997) Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 272:19943–19950

    Article  PubMed  CAS  Google Scholar 

  34. Wang M, Tsai BM, Crisostomo PR, Meldrum DR (2006) Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia. Shock 25:454–459

    Article  PubMed  Google Scholar 

  35. Petrich BG, Eloff BC, Lerner DL, Kovacs A, Saffitz JE, Rosenbaum DS, Wang Y (2004) Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects. J Biol Chem 279:15330–15338

    Article  PubMed  CAS  Google Scholar 

  36. Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J, Takagi G, Karoor V, Hong C, Johnson GL, Vatner DE, Vatner SF (2002) The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest 110:271–279

    PubMed  CAS  Google Scholar 

  37. Clerk A, Sugden PH (1997) Cell stress-induced phosphorylation of ATF2 and c-Jun transcription factors in rat ventricular myocytes. Biochem J 325:801–810

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Shahid Beheshti University of Medical Sciences and Health Services. Our gratitude also goes to Shahid Modarress Hospital staff for helpful collaboration. We would also like to thank Dr. Eznollah Azargashb for conduct of the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayyed Mohammad Hossein Ghaderian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbarzadeh Najar, R., Ghaderian, S.M.H. & Tabatabaei Panah, A.S. Activation of mitogen activated protein kinases in post-infarcted patients. J Thromb Thrombolysis 31, 424–430 (2011). https://doi.org/10.1007/s11239-010-0526-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-010-0526-9

Keywords

Navigation