Skip to main content
Log in

Lonomia obliqua venomous secretion induces human platelet adhesion and aggregation

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

The caterpillar Lonomia obliqua is a venomous animal that causes numerous accidents, especially in southern Brazil, where it is considered a public health problem. The clinical manifestations include several haemostatic disturbances that lead to a hemorrhagic syndrome. Considering that platelets play a central role in hemostasis, in this work we investigate the effects of L. obliqua venomous secretion upon blood platelets responses in vitro. Results obtained shows that L. obliqua venom directly induces aggregation and ATP secretion in human washed platelets in a dose-dependent manner. Electron microscopy studies clearly showed that the venomous bristle extract was also able to produce direct platelets shape change and adhesion as well as activation and formation of platelet aggregates. Differently from other enzyme inhibitors, the venom-induced platelet aggregation was significatively inhibited by p-bromophenacyl bromide, a specific inhibitor of phospholipases A2. Additional experiments with different pharmacological antagonists indicate that the aggregation response triggered by the venom active components occurs through a calcium-dependent mechanism involving arachidonic acid metabolite(s) of the cyclooxygenase pathway and activation of phosphodiesterase 3A, an enzyme that leads to the consumption of intracellular cAMP content. It was additionally found that L. obliqua-induced platelet aggregation was independent of ADP release. Altogether, these findings are in line with the need for a better understanding of the complex hemorrhagic syndrome resulting from the envenomation caused by L. obliqua caterpillars, and can also give new insights into the management of its clinical profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Veiga ABG, Berger M, Guimarães JA (2009) Lonomia obliqua venom: pharmaco-toxicological effects and biotechnological perspectives. In: De Lima ME, Pimenta AMC, Martin-Eauclaire MF, Zingali RB, Rochat H (eds) Animal toxins: the state of the art. perspectives on health and biotechnology, 1st edn. UFMG, Belo Horizonte, pp 371–390

    Google Scholar 

  2. Veiga ABG, Blochtein B, Guimarães JA (2001) Structures involved in production, secretion and injection of the venom produced by the caterpillar Lonomia obliqua (Lepidoptera, Saturniidae). Toxicon 39:1343–1351

    Article  CAS  PubMed  Google Scholar 

  3. Garcia CM, Danni-Oliveira IM (2007) Occurence of accidents caused by Lonomia obliqua Walker, in state of Paraná between 1989 and 2001. Rev Soc Bras Med Trop 40:242–246

    PubMed  Google Scholar 

  4. Kowacs PA, Cardoso J, Entres M, Novak EM, Werneck LC (2006) Fatal intracerebral hemorrhage secondary to Lonomia obliqua caterpillar envenoming, a case report. Arq Neuropsiquiatr 64:1030–1032

    PubMed  Google Scholar 

  5. Gamborgi GP, Metcalf EB, Barros EJG (2006) Acute renal failure provoked by toxin from caterpillars of the species Lonomia obliqua. Toxicon 47:68–74

    Article  CAS  PubMed  Google Scholar 

  6. Reis CV, Kelen EMA, Farsky SHP, Portaro FCV, Sampaio CAM, Fernandes BL, Camargo ACM, Chudzinski-Tavassi AM (1999) A Ca2+ activated serine protease (LOPAP) could be responsible for the haemorrhagic syndrome caused by the caterpillar Lonomia obliqua. Lancet 353:1942

    Article  CAS  PubMed  Google Scholar 

  7. Pinto AFM, Dobrovolski R, Veiga ABG, Guimarães JA (2004) Lonofibrase, a novel α-fibrinogenase from Lonomia obliqua caterpillars. Thromb Res 113:147–154

    Article  CAS  PubMed  Google Scholar 

  8. Alvarez-Flores MP, Fritzen M, Reis CV, Chudzinski-Tavassi AM (2006) Losac, a factor X activator from Lonomia obliqua bristle extract: its role in the pathophysiological mechanisms and cell survival. Biochem Biophys Res Commun 343:1216–1223

    Article  PubMed  Google Scholar 

  9. Seibert CS, Tanaka-Azevedo AM, Santoro ML, Mackessy SP, Torquato RJS, Lebrun I, Tanaka AS, Sano-Martins IS (2006) Purification of a phospholipase A2 from Lonomia obliqua caterpillar bristle extract. Biochem Biophys Res Commun 342:1027–1033

    Article  CAS  PubMed  Google Scholar 

  10. Zannin M, Lourenço DM, Motta G, Costa LRD, Grando M, Gamborgi GP, Noguti MA, Chudzinski-Tavassi AM (2003) Blood coagulation and fibrinolytic factors in 105 patients with hemorrhagic syndrome caused by accidental contact with Lonomia obliqua caterpillar in Santa Catarina, Southern Brazil. Thromb Haemost 89:355–364

    CAS  PubMed  Google Scholar 

  11. Malaque CMS, Andrade L, Madalosso G, Tomy S, Tavares FL, Seguro AC (2006) Short report: a case of hemolysis resulting from contact with a Lonomia caterpillar in southern Brazil. Am J Trop Med Hyg 74:807–809

    CAS  PubMed  Google Scholar 

  12. Berger M, Reck J Jr, Terra RMS, Pinto AFM, Termignoni C, Guimarães JA (2010) Lonomia obliqua caterpillar envenomation causes platelet hypoaggregation and blood incoagulability in rats. Toxicon 55:33–44

    Article  CAS  PubMed  Google Scholar 

  13. Monroe DM, Hoffman M, Roberts HR (2002) Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 22:1381–1389

    Article  CAS  PubMed  Google Scholar 

  14. Ngai PK, Chang JY (1991) A novel one-step purification of human α-thrombin after direct activation of crude prothrombin enriched from plasma. Biochem J 280:805–808

    CAS  PubMed  Google Scholar 

  15. Reck J Jr, Berger M, Marks FS, Zingali R, Canal CW, Ferreira CAS, Guimarães JA, Termignoni C (2009) Pharmacological action of tick saliva upon hemostasis and the neutralization ability of sera from repeated infested hosts. Parasitology (London) 136:1339–1349

    Article  CAS  Google Scholar 

  16. Bednar B, Condra C, Gould RJ, Connolly TM (1995) Platelet aggregation monitored in a 96 well microplate reader is useful for evaluation of platelet agonists and antagonists. Thromb Res 77:453–463

    Article  CAS  PubMed  Google Scholar 

  17. Harrison P (2005) Platelet function analysis. Blood Rev 19:111–123

    Article  PubMed  Google Scholar 

  18. Fuly AL, Soares AM, Marcussi S, Giglio JR, Guimarães JA (2004) Signal transduction pathways involved in the platelet aggregation induced by a D-49 phospholipase A2 isolated from Bothrops jararacussu snake venom. Biochimie 86:731–739

    Article  CAS  PubMed  Google Scholar 

  19. Bellavite P, Andrioli G, Guzzo P, Arigliano P, Chirumbolo S, Manzato F, Santonastaso C (1994) A colorimetric method for the measurement of platelet adhesion in microtiter plates. Anal Biochem 216:444–450

    Article  CAS  PubMed  Google Scholar 

  20. Vieira DF, Watanabe L, Sant’Ana CD, Marcussi S, Sampaio SV, Soares AM, Arni RK (2004) Purification and characterization of jararassin-I, a thrombin-like enzyme from Bothrops jararaca snake venom. Acta Biochim Biophys Sin 36:798–802

    Article  CAS  PubMed  Google Scholar 

  21. Pinto AFM, Silva KRLM, Guimaraes JA (2006) Proteases from Lonomia obliqua venomous secretions: comparison of procoagulant, fibrin(ogen)olytic and amidolytic activities. Toxicon 47:113–121

    Article  CAS  PubMed  Google Scholar 

  22. Diaz-Oreiro C, Gutiérrez JM (1997) Chemical modification of histidine and lysine residues of myotoxic phospholipases A2 isolated from Bothrops asper and Bothrops godmani snake venoms: effects on enzymatic and pharmacological properties. Toxicon 35:241–252

    Article  CAS  PubMed  Google Scholar 

  23. Gear AR (1984) Rapid platelet morphological changes visualized by scanning electron microscopy: kinetics derived from a quenched-flow approach. Br J Haematol 56:387–398

    Article  CAS  PubMed  Google Scholar 

  24. Oenick MDB (2004) Studies on fibrin polymerization and fibrin structure—a retrospective. Biophys Chem 112:187–192

    Article  PubMed  Google Scholar 

  25. Zychar BC, Dale CS, Demarchi DS, Gonçalves LRC (2010) Contribution of metalloproteases, serine proteases and phospholipases A2 to the inflammatory reaction induced by Bothrops jararaca crude venom in mice. Toxicon 55:227–234

    Article  CAS  PubMed  Google Scholar 

  26. Sano-Martins IS, Santoro ML, Castro SCB, Fan HW, Cardoso JLC, Theakston RDG (1997) Platelet aggregation in patients bitten by the Brazilian snake Bothrops jararaca. Thromb Res 87:183–195

    Article  CAS  PubMed  Google Scholar 

  27. Santoro ML, Sano-Martins IS (2004) Platelet dysfunction during Bothrops jararaca snake envenomation in rabbits. Thromb Haemost 92:369–383

    CAS  PubMed  Google Scholar 

  28. Corrêa MS, Siqueira-Batista R, Gomes AP, Franco-Barbosa A, Verzola ACA, Oliveira FRQ, Squeff FA, Motta-Leal-Filho JM, Tavares RH, Amorim DS, De-Maria-Moreira NL, Santos SS (2004) Lonomia erucism in Teresópolis, Rio de Janeiro state, Brazil. Report of a probable case and review. Rev Soc Bras Med Trop 37:418–421

    Article  PubMed  Google Scholar 

  29. Sanders WE, Read MS, Reddick RL, Garris JB, Brinkhous KM (1988) Thrombotic thrombocytopenia with von Willebrand factor deficiency induced by botrocetin. An animal model. Lab Invest 59:443–452

    CAS  PubMed  Google Scholar 

  30. Rucavado A, Soto M, Kamiguti AS, Theakston RDG, Fox JW, Escalante T, Gutiérrez JM (2001) Characterization of aspercetin, a platelet aggregating component from the venom of the snake Bothrops asper which induces thrombocytopenia and potentiates metalloproteinase-induced hemorrhage. Thromb Haemost 85:710–715

    CAS  PubMed  Google Scholar 

  31. Rucavado A, Soto M, Escalante T, Loria GD, Arni R, Gutiérrez JM (2005) Thrombocytopenia and platelet hypoaggregation induced by Bothrops asper snake venom. Thromb Haemost 94:123–131

    CAS  PubMed  Google Scholar 

  32. Veiga ABG, Ribeiro JMC, Guimarães JA, Francischetti IMB (2005) A catalog for the transcripts from the venomous structures of the caterpillar Lonomia obliqua: identification of the proteins potentially involved in the coagulation disorder and hemorrhagic syndrome. Gene 355:11–27

    Article  CAS  PubMed  Google Scholar 

  33. Kini RM (2003) Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 42:827–840

    Article  CAS  PubMed  Google Scholar 

  34. Kini RM, Evans HJ (1995) The role of enzymatic activity in inhibition of the extrinsic tenase complex by phospholipase A2 isoenzymes from Naja nigricollis venom. Toxicon 33:1585–1590

    Article  CAS  PubMed  Google Scholar 

  35. Fuly AL, Machado OLT, Alves EW, Carlini CR (1997) Mechanism of inhibitory action on platelet activation of a phospholipase A2 isolated from Lachesis muta (Bushmaster) snake venom. Thromb Haemost 78:1372–1380

    CAS  PubMed  Google Scholar 

  36. Seibert CS, Oliveira MRL, Gonçalves LRC, Santoro ML, Sano-Martins IS (2004) Intravascular hemolysis induced by Lonomia obliqua caterpillar bristle extract: an experimental model of envenomation in rats. Toxicon 44:793–799

    Article  CAS  PubMed  Google Scholar 

  37. Blockmans D, Deckmyn H, Vermylen J (1995) Platelet Activation. Blood Rev 9:143–156

    Article  CAS  PubMed  Google Scholar 

  38. Jennings B, Spearman W, Shephard E (2005) A novel 25 kDa protein from the venom of Bitis arietans with similarity to C-type lectins causes fibrinogen-dependent platelet agglutination. Toxicon 46:687–698

    Article  CAS  PubMed  Google Scholar 

  39. Jackson SP, Schoenwaelder SM (2003) Antiplatelet therapy: In search of the ‘Magic Bullet’. Nat Rev Drug Discov 2:1–15

    Article  Google Scholar 

  40. Roberts DE, Bose R (2002) Reverse mode Na+/Ca2+ exchange in the collagen activation of human platelets. Ann N Y Acad Sci 976:345–349

    Article  CAS  PubMed  Google Scholar 

  41. Roberts DE, McNicol A, Bose R (2004) Mechanism of collagen activation in human platelets. J Biol Chem 279:19421–19430

    Article  CAS  PubMed  Google Scholar 

  42. Clutton P, Folts JD, Freedman JE (2001) Pharmacological control of platelet function. Pharmacol Res 44:255–264

    Article  CAS  PubMed  Google Scholar 

  43. FitzGerald GA (1991) Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. Am J Cardiol 68:11B–15B

    Article  CAS  PubMed  Google Scholar 

  44. Rosado JA, Porras T, Conde C, Sage SO (2001) Cyclic nucleotides modulate store-mediated calcium entry through the activation of protein-tyrosine phosphatases and altered actin polymerization in human platelets. J Biol Chem 276:15666–15675

    Article  CAS  PubMed  Google Scholar 

  45. Tani T, Sakurai K, Kimura Y, Ishikawa T, Hidaka H (1992) Pharmacological manipulation of tissue cyclic AMP by inhibitors. Effects of phosphodiesterase inhibitors on the functions of platelets and vascular endothelial cells. Adv Second Messenger Phosphoprotein Res 25:215–227

    CAS  PubMed  Google Scholar 

  46. Zhang W, Colman RW (2007) Thrombin regulates intracellular cyclic AMP concentration in human platelets through phosphorylation/activation of phosphodiesterase 3A. Blood 110:1475–1482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by fellowship grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-MCT), Brazil, and also from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-MEC), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Guimarães.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, M., Reck, J., Terra, R.M.S. et al. Lonomia obliqua venomous secretion induces human platelet adhesion and aggregation. J Thromb Thrombolysis 30, 300–310 (2010). https://doi.org/10.1007/s11239-010-0449-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-010-0449-5

Keywords

Navigation