Skip to main content

Advertisement

Log in

Genetic polymorphisms in platelet-related proteins and coronary artery disease: investigation of candidate genes, including N-acetylgalactosaminyltransferase 4 (GALNT4) and sulphotransferase 1A1/2 (SULT1A1/2)

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Background Both platelet function and heart disease show strong genetic components, many of which remain to be elucidated. Materials and methods The roles of candidate polymorphisms in ten platelet-associated genes were compared between 1,237 Acute Coronary Syndrome (ACS) cases (with myocardial infarction and unstable angina) and 386 controls, from an Irish Caucasian population. Additionally, 361 stable angina patients were investigated. Two genes of interest were followed up in a separate Irish study of 1,484 individuals (577 with IHD and 907 unaffected). Results The GALNT4 (N-acetyl galactosaminyl transferase 4) 506I allele was significantly underrepresented in ACS (OR = 0.66, CI = 0.52–0.84; P = 0.001; P = 0.01 after correction for multiple testing), while the SULT1A1 (Sulphotransferase 1A1) 213H allele was associated with risk of ACS (OR = 1.37, CI = 1.08–1.74; P = 0.01; P = 0.1 after correction for multiple testing). Subsequent genotyping of further SNPs in GALNT4 in the family-based (IHD) group revealed that the 506I allele showed the same trend towards protecting against ACS but the haplotypic test over the four commonest haplotypes was not significant (P = 0.55). In contrast, the SULT1A1/SULT1A2 gene complex showed suggestive haplotypic association in the family-based study (P = 0.07), with the greatest increase in risk conferred by the SULT1A2 235T allele (P = 0.025). Conclusion We have identified two risk genes for cardiovascular disease, one of whose (GALNT4) effects may be on either platelet or endothelial function through modifications of PSGL1 or other important glycosylated proteins. The role of sulphotransferases (SULT1A1/2) in cardiovascular disease requires further exploration. Further validation of cardiovascular risks conferred by both genes in other populations (including gene copy number variation) is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Donnell CJ, Larson MG, Feng D, Sutherland PA, Lindpaintner K, Myers RH, D’Agostino RA, Levy D, Tofler GH (2001) Genetic and environmental contributions to platelet aggregation: the Framingham heart study. Circulation 103(25):3051–3056

    PubMed  CAS  Google Scholar 

  2. Casorelli I, De Stefano V, Leone AM, Chiusolo P, Burzotta F, Paciaroni K, Rossi E, Andreotti F, Leone G, Maseri A (2001) The C807T/G873A polymorphism in the platelet glycoprotein Ia gene and the risk of acute coronary syndrome in the Italian population. Br J Haematol 114(1):150–154

    Article  PubMed  CAS  Google Scholar 

  3. Boekholdt SM, Peters RJ, de Maat MP, Zwinderman AH, van Der Wall EE, Reitsma PH, Jukema JW, Kastelein JJ (2004) Interaction between a genetic variant of the platelet fibrinogen receptor and fibrinogen levels in determining the risk of cardiovascular events. Am Heart J 147(1):181–186

    Article  PubMed  CAS  Google Scholar 

  4. Ollikainen E, Mikkelsson J, Perola M, Penttila A, Karhunen PJ (2004) Platelet membrane collagen receptor glycoprotein VI polymorphism is associated with coronary thrombosis and fatal myocardial infarction in middle-aged men. Atherosclerosis 176(1):95–99

    Article  PubMed  CAS  Google Scholar 

  5. Schafer AI (2003) Genetic and acquired determinants of individual variability of response to antiplatelet drugs. Circulation 108(8):910–911

    Article  PubMed  Google Scholar 

  6. Maree AO, Curtin R, Dooley M, Conroy RM, Crean P, Cox D, Fitzgerald DJ (2005) Platelet response to low-dose enteric-coated aspirin in patients with stable cardiovascular disease. J Am Coll Cardiol 7(46):1258–1263

    Article  CAS  Google Scholar 

  7. O’Halloran AM, Stanton A, O’Brien E, Shields DC (2006) The impact on coronary artery disease of common polymorphisms known to modulate responses to pathogens. Ann Hum Genet 70(Pt 6):934–945

    Article  PubMed  CAS  Google Scholar 

  8. Spence MS, McGlinchey PG, Patterson CC, Belton C, Murphy G, McMaster D, Fogarty DG, Evans AE, McKeown PP (2002) Family-based investigation of the C677T polymorphism of the methylenetetrahydrofolate reductase gene in ischaemic heart disease. Atherosclerosis 165(2):293–299

    Article  PubMed  CAS  Google Scholar 

  9. Rose GA, Blackburn H, Gillum RF, Prineas RJ (1982) Cardiovascular survey methods, 2nd edn. World Health Organisation. Monograph series No. 56

  10. Blackburn H, Keys A, Simonson E, Rautaharju P, Punsar S (1960) The electrocardiogram in population studies: A classification system. Circulation 21:1160–1175

    PubMed  CAS  Google Scholar 

  11. Maree AO, Curtin R, Chubb A, Dolan C, Cox D, O’Brien J, Crean P, Shields DC, Fitzgerald DJ (2005) Cyclooxygenase-1 haplotype modulates platelet response to aspirin. J Thromb Haemost 10(3):2340–2345

    Article  Google Scholar 

  12. Raftogianis R, Wood T, Weinshilboum R (1999) Human phenol sulfotransferases SULT1A2 and SULT1A1: genetic polymorphisms, allozyme properties, and human liver genotype-phenotype correlations. Biochem Pharmacol 58(4):605–616

    Article  PubMed  CAS  Google Scholar 

  13. Smigielski EM, Sirotkin K, Ward M, Sherry ST (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28(1):352–355

    Article  PubMed  CAS  Google Scholar 

  14. Gum PA, Kottke-Marchant K, Welsh PA, White J, Topol EJ (2003) A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J Am Coll Cardiol 41(6):961–965

    Article  PubMed  CAS  Google Scholar 

  15. StataCorp (2003) Stata Statistical Software, 8th edn. StataCorp LP, College Station, TX

  16. International HapMap Project [http://www.hapmap.org/]

  17. Sakai T, Morita Y, Araki T, Kano M, Yoshida T (2000) Relationship between delta-aminolevulinic acid dehydratase genotypes and heme precursors in lead workers. Am J Ind Med 38(3):355–360

    Article  PubMed  CAS  Google Scholar 

  18. Wetmur JG, Kaya AH, Plewinska M, Desnick RJ (1991) Molecular characterization of the human delta-aminolevulinate dehydratase 2 (ALAD2) allele: implications for molecular screening of individuals for genetic susceptibility to lead poisoning. Am J Hum Genet 49(4):757–763

    PubMed  CAS  Google Scholar 

  19. Smith JW, Hayward CP, Horsewood P, Warkentin TE, Denomme GA, Kelton JG (1995) Characterization and localization of the Gova/b alloantigens to the glycosylphosphatidylinositol-anchored protein CDw109 on human platelets. Blood 86(7):2807–2814

    PubMed  CAS  Google Scholar 

  20. Mann V, Hobson EE, Li B, Stewart TL, Grant SF, Robins SP, Aspden RM, Ralston SH (2001) A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 107(7):899–907

    Article  PubMed  CAS  Google Scholar 

  21. Mann V, Ralston SH (2003) Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone 32(6):711–717

    Article  PubMed  CAS  Google Scholar 

  22. Zafarullah K, Kleinert C, Tromp G, Kuivaniemi H, Kontusaari S, Wu YL, Ganguly A, Prockop DJ (1990) G to A polymorphism in exon 31 of the COL3A1 gene. Nucleic Acids Res 18(20):6180

    Article  PubMed  CAS  Google Scholar 

  23. Bennett EP, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell J, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG et al (1998) Cloning of a human UDP-N-acetyl-alpha-D-Galactosamine: polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 273(46):30472–30481

    Article  PubMed  CAS  Google Scholar 

  24. Croft SA, Samani NJ, Teare MD, Hampton KK, Steeds RP, Channer KS, Daly ME (2001) Novel platelet membrane glycoprotein VI dimorphism is a risk factor for myocardial infarction. Circulation 104(13):1459–1463

    Article  PubMed  CAS  Google Scholar 

  25. Joutsi-Korhonen L, Smethurst PA, Rankin A, Gray E, Ijsseldijk M, Onley CM, Watkins NA, Williamson LM, Goodall AH, de Groot PG et al (2003) The low-frequency allele of the platelet collagen signaling receptor glycoprotein VI is associated with reduced functional responses and expression. Blood 101(11):4372–4379

    Article  PubMed  CAS  Google Scholar 

  26. Arning L, Jagiello P, Wieczorek S, Saft C, Andrich J, Epplen JT (2004) Glutathione S-Transferase Omega 1 variation does not influence age at onset of Huntington’s disease. BMC Med Genet 5(1):7

    Article  PubMed  Google Scholar 

  27. Tanaka-Kagawa T, Jinno H, Hasegawa T, Makino Y, Seko Y, Hanioka N, Ando M (2003) Functional characterization of two variant human GSTO 1-1s (Ala140Asp and Thr217Asn). Biochem Biophys Res Commun 301(2):516–520

    Article  PubMed  CAS  Google Scholar 

  28. Detter JC, Zhang Q, Mules EH, Novak EK, Mishra VS, Li W, McMurtrie EB, Tchernev VT, Wallace MR, Seabra MC et al (2000) Rab geranylgeranyl transferase alpha mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis. Proc Natl Acad Sci USA 97(8):4144–4149

    Article  PubMed  CAS  Google Scholar 

  29. Li W, Detter JC, Weiss HJ, Cramer EM, Zhang Q, Novak EK, Favier R, Kingsmore SF, Swank RT (2000) 5′-UTR structural organization, transcript expression, and mutational analysis of the human Rab geranylgeranyl transferase alpha-subunit (RABGGTA) gene. Mol Genet Metab 71(4):599–608

    Article  PubMed  CAS  Google Scholar 

  30. Swank RT, Jiang SY, Reddington M, Conway J, Stephenson D, McGarry MP, Novak EK (1993) Inherited abnormalities in platelet organelles and platelet formation and associated altered expression of low molecular weight guanosine triphosphatebinding proteins in the mouse pigment mutant gunmetal. Blood 81(10):2626–2635

    PubMed  CAS  Google Scholar 

  31. Jones AL, Roberts RC, Coughtrie MW (1993) The human phenolsulphotransferase polymorphism is determined by the level of expression of the enzyme protein. Biochem J 296(Pt 2):287–290

    PubMed  CAS  Google Scholar 

  32. Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM (1997) Phenol sulfotransferase pharmacogenetics in humans: association of common SULT1A1 alleles with TS PST phenotype. Biochem Biophys Res Commun 239(1):298–304

    Article  PubMed  CAS  Google Scholar 

  33. Narizhneva NV, Byers-Ward VJ, Quinn MJ, Zidar FJ, Plow EF, Topol EJ, Byzova TV (2004) Molecular and functional differences induced in thrombospondin-1 by the single nucleotide polymorphism associated with the risk of premature, familial myocardial infarction. J Biol Chem 279(20):21651–21657

    Article  PubMed  CAS  Google Scholar 

  34. Topol EJ, McCarthy J, Gabriel S, Moliterno DJ, Rogers WJ, Newby LK, Freedman M, Metivier J, Cannata R, O’Donnell CJ et al (2001) Single nucleotide polymorphisms in multiple novel thrombospondin genes may be associated with familial premature myocardial infarction. Circulation 104(22):2641–2644

    Article  PubMed  CAS  Google Scholar 

  35. Hebbring SJ, Adjei A, Baer JL, Jenkins GD, Zhang J, Cunningham JM, Schaid DJ, Weinshilboum RM, Thibodeau SN (2007) Human SULT1A1 gene: copy number differences and functional implications. Hum Mol Genet 16(5):463–470

    Article  PubMed  CAS  Google Scholar 

  36. Dolan C, O’Halloran A, Bradley DG, Croke DT, Evans A, O’Brien J K, Dicker P, Shields DC (2005) Genetic stratification of pathogen-response-related and other variants within a homogeneous Caucasian Irish population. Eur J Hum Genet 13(7):798–806

    Article  PubMed  CAS  Google Scholar 

  37. McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF (1989) GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest 84(1):92–99

    Article  PubMed  CAS  Google Scholar 

  38. Yang J, Furie BC, Furie B (1999) The biology of P-selectin glycoprotein ligand-1: its role as a selectin counterreceptor in leukocyte-endothelial and leukocyte-platelet interaction. Thromb Haemost 81(1):1–7

    PubMed  CAS  Google Scholar 

  39. Liu W, Ramachandran V, Kang J, Kishimoto TK, Cummings RD, McEver RP (1998) Identification of N-terminal residues on P-selectin glycoprotein ligand-1 required for binding to P-selectin. J Biol Chem 273(12):7078–7087

    Article  PubMed  CAS  Google Scholar 

  40. Hassan H, Reis CA, Bennett EP, Mirgorodskaya E, Roepstorff P, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H (2000) The lectin domain of UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase-T4 directs its glycopeptide specificities. J Biol Chem 275(49):38197–38205

    Article  PubMed  CAS  Google Scholar 

  41. Hanisch FG, Reis C, Clausen H, Paulsen H (2001) Evidence for glycosylation-dependent activities of polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 on mucin glycopeptides. Glycobiology 11(9):731–740

    Article  PubMed  CAS  Google Scholar 

  42. Coughtrie MW, Sharp S, Maxwell K, Innes NP (1998) Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chem Biol Interact 109(1–3):3–27

    Article  PubMed  CAS  Google Scholar 

  43. Falany CN (1991) Molecular enzymology of human liver cytosolic sulfotransferases. Trends Pharmacol Sci 12(7):255–259

    Article  PubMed  CAS  Google Scholar 

  44. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB (1997) Sulfation and sulfotransferases 1: sulfotransferase molecular biology: cDNAs and genes. FASEB J 11(1):3–14

    PubMed  CAS  Google Scholar 

  45. Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, Johansson SL, Patil KD, Gross ML, Gooden JK et al (1997) Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci USA 94(20):10937–10942

    Article  PubMed  CAS  Google Scholar 

  46. Glatt H (1997) Sulfation and sulfotransferases 4: bioactivation of mutagens via sulfation. FASEB J 11(5):314–321

    PubMed  CAS  Google Scholar 

  47. Nowell S, Ambrosone CB, Ozawa S, MacLeod SL, Mrackova G, Williams S, Plaxco J, Kadlubar FF, Lang NP (2000) Relationship of phenol sulfotransferase activity (SULT1A1) genotype to sulfotransferase phenotype in platelet cytosol. Pharmacogenetics 10(9):789–797

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Irish Cardiology genetics network (ACS study) for contributing samples to this study, and Prof Desmond Fitzgerald and Prof Eoin O’Brien for assistance in establishing study populations. This research was supported by grants from the Programme for Research in Third Level Institutes administered by the Higher Education Authority (HEA), and by the Health Research Board (HRB) of Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. O’Halloran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Halloran, A.M., Patterson, C.C., Horan, P. et al. Genetic polymorphisms in platelet-related proteins and coronary artery disease: investigation of candidate genes, including N-acetylgalactosaminyltransferase 4 (GALNT4) and sulphotransferase 1A1/2 (SULT1A1/2). J Thromb Thrombolysis 27, 175–184 (2009). https://doi.org/10.1007/s11239-008-0196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-008-0196-z

Keywords

Navigation