Skip to main content

Advertisement

Log in

Association of D-dimer with microalbuminuria in patients with type 2 diabetes mellitus

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Background Microalbuminuria has been reported to be related to incidence of cardiovascular complications in diabetes. No consistent findings have been obtained on the relationships of microalbuminuria with blood coagulation and fibrinolysis. The purpose of this study was to determine whether microalbuminuria is associated with blood markers reflecting coagulation and fibrinolysis activities in patients with type 2 diabetes. Methods The relationships of albumin excretion rate (AER) with atherosclerosis-related variables, including blood coagulation and fibrinolysis markers, were investigated in patients with type 2 diabetes who showed normoalbuminuria (AER: less than 20 μg/min) and microalbuminuria (AER: 20 μg/min or higher and less than 200 μg/min). Results AER was significantly correlated with body mass index (BMI), maximum intima-media thickness of common carotid arteries, blood HDL cholesterol, uric acid, creatinine and D-dimer. On the other hand, AER showed no significant correlation with blood platelets, fibrinogen, thrombin–antithrombin III complex, plasmin–α2 plasmin inhibitor complex and plasminogen activator inhibitor-1. In multiple regression analysis, using age, sex, BMI, pulse pressure, hemoglobin A1c, HDL cholesterol, uric acid, creatinine, D-dimer and history of anti-thrombotic therapy as explanatory variables, only D-dimer showed a significant correlation with AER. The mean level of log-converted D-dimer after adjustment for age and sex was significantly higher in subjects with microalbuminuria than in those with normoalbuminuria. Conclusions D-dimer is associated with microalbuminuria in patients with diabetes and this suggests that glomerular dysfunction is in part mediated by hypercoagulability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parving HH (1996) Microalbuminuria in essential hypertension and diabetes mellitus. J Hypertens Suppl 14:S89–S93

    Article  PubMed  CAS  Google Scholar 

  2. Dinneen SF, Gerstein HC (1997) The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med 157:1413–1418

    Article  PubMed  CAS  Google Scholar 

  3. Mogensen CE (1984) Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 310:356–360

    Article  PubMed  CAS  Google Scholar 

  4. Parving HH, Oxenbøll B, Svendsen PA, Christiansen JS, Andersen AR (1982) Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh) 100:550–555

    CAS  Google Scholar 

  5. Messent JW, Elliott TG, Hill RD, Jarrett RJ, Keen H, Viberti GC (1992) Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study. Kidney Int 41:836–839

    Article  PubMed  CAS  Google Scholar 

  6. Guerrero-Romero F, Rodríguez-Morán M (1999) Proteinuria is an independent risk factor for ischemic stroke in non-insulin-dependent diabetes mellitus. Stroke 30:1787–1791

    PubMed  CAS  Google Scholar 

  7. Gerstein HC, Mann JF, Yi Q et al, HOPE Study Investigators (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286:421–426

    Google Scholar 

  8. Borch-Johnsen K, Feldt-Rasmussen B, Strandgaard S, Schroll M, Jensen JS (1999) Urinary albumin excretion. An independent predictor of ischemic heart disease. Arterioscler Thromb Vasc Biol 19:1992–1997

    PubMed  CAS  Google Scholar 

  9. Wachtell K, Ibsen H, Olsen MH et al (2003) Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann Intern Med 139:901–906

    PubMed  Google Scholar 

  10. Kannel WB, D’Agostino RB, Wilson PW, Belanger AJ, Gagnon DR (1990) Diabetes, fibrinogen, and risk of cardiovascular disease: the Framingham experience. Am Heart J 120:672–676

    Article  PubMed  CAS  Google Scholar 

  11. Ganda OP, Arkin CF (1992) Hyperfibrinogenemia. An important risk factor for vascular complications in diabetes. Diabetes Care 15:1245–1250

    Article  PubMed  CAS  Google Scholar 

  12. Ceriello A (1993) Coagulation activation in diabetes mellitus: the role of hyperglycaemia and therapeutic prospects. Diabetologia 36:1119–1125

    Article  PubMed  CAS  Google Scholar 

  13. Gabazza EC, Takeya H, Deguchi H et al (1996) Protein C activation in NIDDM patients. Diabetologia 39:1455–1461

    Article  PubMed  CAS  Google Scholar 

  14. Myrup B, de Maat M, Rossing P, Gram J, Kluft C, Jespersen J (1996) Elevated fibrinogen and the relation to acute phase response in diabetic nephropathy. Thromb Res 81:485–490

    Article  PubMed  CAS  Google Scholar 

  15. Shimizu H, Ohtani K, Tanaka Y et al (1995) Increased plasma thrombin-antithrombin III complex levels in non-insulin dependent diabetic patients with albuminuria are reduced by ethyl icosapentatenoate. Thromb Haemost 74:1231–1234

    PubMed  CAS  Google Scholar 

  16. Knöbl P, Schernthaner G, Schnack C et al (1993) Thrombogenic factors are related to urinary albumin excretion rate in type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36:1045–1050

    Article  PubMed  Google Scholar 

  17. Kario K, Sakata T, Matsuo T, Miyata T (1993) Factor VII in non-insulin-dependent diabetic patients with microalbuminuria. Lancet 342:1552

    Article  PubMed  CAS  Google Scholar 

  18. Asakawa H, Tokunaga K, Kawakami F (2000) Elevation of fibrinogen and thrombin-antithrombin III complex levels of type 2 diabetes mellitus patients with retinopathy and nephropathy. J Diabetes Complications 14:121–126

    Article  PubMed  CAS  Google Scholar 

  19. Agewall S, Lindstedt G, Fagerberg B (2001) Independent relationship between microalbuminuria and plasminogen activator inhibitor-1 activity (PAI-1) activity in clinically healthy 58-year-old men. Atherosclerosis 157:197–202

    Article  PubMed  CAS  Google Scholar 

  20. Agewall S, Fagerberg B, Attvall S et al (1995) Microalbuminuria, insulin sensitivity and haemostatic factors in non-diabetic treated hypertensive men. Risk Factor Intervention Study Group. J Intern Med 237:195–203

    Article  PubMed  CAS  Google Scholar 

  21. Donders SH, Lustermans FA, van Wersch JW (1993) The effect of microalbuminuria on glycaemic control, serum lipids and haemostasis parameters in non-insulin-dependent diabetes mellitus. Ann Clin Biochem 30:439–444

    PubMed  Google Scholar 

  22. Sumida Y, Wada H, Fujii M et al (1997) Increased soluble fibrin monomer and soluble thrombomodulin levels in non-insulin-dependent diabetes mellitus. Blood Coagul Fibrinolysis 8:303–307

    Article  PubMed  CAS  Google Scholar 

  23. Gruden G, Cavallo-Perin P, Bazzan M, Stella S, Vuolo A, Pagano G (1994) PAI-1 and factor VII activity are higher in IDDM patients with microalbuminuria. Diabetes 43:426–429

    Article  PubMed  CAS  Google Scholar 

  24. van Wersch JW, Donders SH, Westerhuis LW, Venekamp WJ (1991) Microalbuminuria in diabetic patients: relationship to lipid, glyco-metabolic, coagulation and fibrinolysis parameters. Eur J Clin Chem Clin Biochem 29:493–498

    PubMed  Google Scholar 

  25. Anonymous (1997) The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20:1183–1197

    Google Scholar 

  26. Bennett PH, Haffner S, Kasiske BL et al (1995) Screening and management of microalbuminuria in patients with diabetes mellitus: recommendations to the Scientific Advisory Board of the National Kidney Foundation from an ad hoc committee of the Council on Diabetes Mellitus of the National Kidney Foundation. Am J Kidney Dis 25:107–112

    Article  PubMed  CAS  Google Scholar 

  27. Handa N, Matsumoto M, Maeda H et al (1990) Ultrasonic evaluation of early carotid atherosclerosis. Stroke 21:1567–1572

    PubMed  CAS  Google Scholar 

  28. Wakabayashi I, Masuda H (2006) Association of acute-phase reactants with arterial stiffness in patients with type 2 diabetes mellitus. Clin Chim Acta 365:230–235

    Article  PubMed  CAS  Google Scholar 

  29. Wakabayashi I, Masuda H (2002) Relation of serum sialic acid to blood coagulation activity in type 2 diabetes. Blood Coagul Fibrinolysis 13:691–696

    Article  PubMed  CAS  Google Scholar 

  30. Mertens I, Van Gaal LF (2002) Obesity, haemostasis and the fibrinolytic system. Obes Rev 3:85–101

    Article  PubMed  CAS  Google Scholar 

  31. De Pergola G, Pannacciulli N (2002) Coagulation and fibrinolysis abnormalities in obesity. J Endocrinol Invest 25:899–904

    PubMed  Google Scholar 

  32. Bowles LK, Cooper JA, Howarth DJ, Miller GJ, MacCallum PK (2003) Associations of haemostatic variables with body mass index: a community-based study. Blood Coagul Fibrinolysis 14:569–573

    Article  PubMed  Google Scholar 

  33. Yuyun MF, Adler AI, Wareham NJ (2005) What is the evidence that microalbuminuria is a predictor of cardiovascular disease events? Curr Opin Nephrol Hypertens 14:271–276

    Article  PubMed  CAS  Google Scholar 

  34. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B et al (2004) Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 110:32–35

    Article  PubMed  CAS  Google Scholar 

  35. Ritz E (2003) Albuminuria and vascular damage—the vicious twins. N Engl J Med 348:2349–2352

    Article  PubMed  Google Scholar 

  36. Garg JP, Bakris GL (2002) Microalbuminuria: marker of vascular dysfunction, risk factor for cardiovascular disease. Vasc Med 7:35–43

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant for scientific research from the Ministry of Education, Science and Culture of Japan (No. 17590656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Wakabayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakabayashi, I., Masuda, H. Association of D-dimer with microalbuminuria in patients with type 2 diabetes mellitus. J Thromb Thrombolysis 27, 29–35 (2009). https://doi.org/10.1007/s11239-007-0155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-007-0155-0

Keywords

Navigation