Skip to main content
Log in

Photochemical Processes Involving Graphene Oxide

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Recent research on photochemical processes involving graphene oxide are summarized and analyzed. Such processes include the reduction of this oxide upon photoexcitation both with and without molecular or semiconductor photocatalysts, conversions of various substrates induced by graphene oxide as a photocatalyst (photoinitiator), and photocatalytic reactions, in which graphene oxide and the products of its reduction are cocatalysts. The major features and possible mechanisms of these reactions as well as areas for the further development of basic and applied research in this field of photochemistry of graphene oxide are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Scheme 3
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nature Photonics., 4, N 9, 611–622 (2010).

    CAS  Google Scholar 

  2. R. Y. N. Gengler, K. Spyrou, and P. Rudolf, J. Phys. D, 43, N 37, 374015 (2010).

    Google Scholar 

  3. X. Wan, G. Long, L. Huang, and Y. Chen, Adv. Mater., 23, N 45, 5342–5358 (2011).

    CAS  Google Scholar 

  4. H.-P. Boehm, Angew. Chem. Int. Ed., 49, N 49, 9332–9335 (2010).

    CAS  Google Scholar 

  5. D. Wei and Y. Liu, Adv. Mater., 22, N 30, 3225–3241 (2010).

    CAS  Google Scholar 

  6. J. Liu, J. Tang, and J. J. Gooding, J. Mater. Chem., 22, N 25, 12435–12452 (2012).

    CAS  Google Scholar 

  7. Q. Bao and K. P. Loh, ACS Nano, 6, N 5, 3677–3694 (2012).

    CAS  Google Scholar 

  8. A. Ciesielski and P. Samori, Chem. Soc. Rev., 43, N 1, 381–398 (2014).

    CAS  Google Scholar 

  9. D. S. Su, S. Perathoner, and G. Centi, Chem. Rev., 113, N 8, 5782–5816 (2013).

    CAS  Google Scholar 

  10. B. Luo, S. Liu, and L. Zhi, Small, 8, N 5, 630–646 (2012).

    CAS  Google Scholar 

  11. Y. Zhu, S. Murali, W. Cai, et al., Adv. Mater., 22, N 35, 3906–3924 (2010).

    CAS  Google Scholar 

  12. D. W. Chang, H.-J. Choi, A. Filer, and J.-B. Baek, J. Mater. Chem. A, 2, N 31, 12136–12149 (2014).

    CAS  Google Scholar 

  13. S. Zhu, S. Tang, J. Zhang, and B. Yang, Chem. Commun., 48, N 38, 4527–4539 (2012).

    CAS  Google Scholar 

  14. H. Tang, C. K. Hessel, J. Wang, et al., Chem. Soc. Rev., 43, N 13, 4281–4299 (2014).

    CAS  Google Scholar 

  15. D. R. Dreyer, S. Park, C. W. Bielawski, and R. D. Ruoff, Chem. Soc. Rev., 39, N 1, 228–240 (2010).

    CAS  Google Scholar 

  16. G. Eda and M. Chhowalla, Adv. Mater., 22, N 21, 2392–2415 (2010).

    CAS  Google Scholar 

  17. S. Eigler, S. Grimm, F. Hof, and A. Hirsch, J. Mater. Chem. A, 1, N 38, 11559–11562 (2013).

    CAS  Google Scholar 

  18. C. K. Chua and M. Pumera, Chem. Soc. Rev., 43, N 1, 291–312 (2014).

    CAS  Google Scholar 

  19. A. Bianco, H.-M. Cheng, T. Enoki, et al., Carbon, 65, 1–6 (2013).

    CAS  Google Scholar 

  20. D. R. Dreyer, A. D. Todd, and C. W. Bielawski, Chem. Soc. Rev., 43, N 15, 5288–5301 (2014).

    CAS  Google Scholar 

  21. F. Perrozzi, S. Prezioso, and L. Ottaviano, J. Phys.: Condens. Matter., 27, N 1, 013002 (2015).

    CAS  Google Scholar 

  22. Q. Xiang and J. Yu, M. Jaroniec, Chem. Soc. Rev., 41, N 2, 782–796 (2012).

    CAS  Google Scholar 

  23. S. Bai and X. Shen, RSC Adv., 2, N 1, 64–98 (2012).

    CAS  Google Scholar 

  24. S. Prezioso, F. Perrozzi, M. Donarelli, et al., Carbon, 79, 478–485 (2014).

    CAS  Google Scholar 

  25. Y. Matsumoto, M. Koinuma, S. Y. Kim, et al., ACS Appl. Mater. Interface, 2, N 12, 3461–3466 (2010).

    CAS  Google Scholar 

  26. Y. Matsumoto, M. Koinuma, S. Ida, et al., J. Phys. Chem. C, 115, N 40, 19820–19286 (2011).

    Google Scholar 

  27. Y. H. Ding, P. Zhang, Q. Zhuo, et al., Nanotechnology, 22, N 21, 215601 (2011).

    CAS  Google Scholar 

  28. F. Zhao, J. Liu, X. Huang, et al., ACS Nano, 6, N 4, 3027–3033 (2012).

    CAS  Google Scholar 

  29. K. Savva, Y.-H. Lin, C. Petridis, et al., J. Mater. Chem. C, 2, N 29, 5931–5937 (2014).

    CAS  Google Scholar 

  30. B. Li, X. Zhang, P. Chen, et al., RSC Adv., 4, N 5, 2404–2408 (2014).

    CAS  Google Scholar 

  31. A. L. Stroyuk, N. S. Andryushina, N. D. Shcherban’, et al., Teor. Éksp. Khim., 48, No. 1, 1–11 (2012). [Theor. Exp. Chem., 48, No. 1, 2–13 (2012) (English translation).]

  32. K. Erickson, R. Erni, Z. Lee, et al., Adv. Mater., 22, N 40, 4467–4472 (2010).

    CAS  Google Scholar 

  33. C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, et al., Nano Lett., 10, N 4, 1144–1148 (2010).

    Google Scholar 

  34. X. An and J. C. Yu, RSC Adv., 1, N 8, 1426–1434 (2011).

    CAS  Google Scholar 

  35. S. Cui, S. Mao, G. Lu, and J. Chen, J. Phys. Chem. Lett., 4, N 15, 2441–2454 (2013).

    CAS  Google Scholar 

  36. H. Sun and S. Wang, Energy Fuels, 28, N 1, 22–36 (2014).

    CAS  Google Scholar 

  37. N. S. Andryushina and O. L. Stroyuk, Appl. Catal. B, 148/149, 543–549 (2014).

    Google Scholar 

  38. T.-F. Yeh, C. Y. Teng, S.-J. Chen, and H. Teng, Adv. Mater., 26, N 20, 3297–3303 (2014).

    CAS  Google Scholar 

  39. S. Moussa, A. R. Siamaki, B. F. Gupton, and M. S. El-Shall, ACS Catal., 2, N 1, 145–154 (2012).

    CAS  Google Scholar 

  40. H.-W. Cho and J.-J. Wu, J. Colloid Interface Sci., 438, 291–295 (2015).

    CAS  Google Scholar 

  41. Y. Zhang, X. Yuan, Y. Wang, and Y. Chen, J. Mater. Chem., 22, N 15, 7245–7251 (2012).

    CAS  Google Scholar 

  42. G.-L. Wang, X. Xu, X. Wu, et al., J. Phys. Chem. C, 118, N 48, 28109–28117 (2014).

    CAS  Google Scholar 

  43. N. S. Andryushina, O. L. Stroyuk, G. V. Dudarenko, et al., J. Photochem. Photobiol. A, 256, 1–6 (2013).

    CAS  Google Scholar 

  44. B. C. Brodie, Phil. Trans. R. Soc. Lond., 149, 249–259 (1859).

    Google Scholar 

  45. W. S. Hummers and R. E. Offerman, J. Am. Chem. Soc., 80, N 6, 1339 (1958).

    CAS  Google Scholar 

  46. G. Eda, Y.-Y. Lin, C. Mattevi, et al., Adv. Mater., 22, N 4, 505–509 (2010).

    CAS  Google Scholar 

  47. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, et al., ACS Nano, 4, N 8, 4806–4814 (2010).

    CAS  Google Scholar 

  48. A. Pulido, P. Concepcion, M. Boronat, et al., J. Mater. Chem., 22, N 1, 51–56 (2012).

    CAS  Google Scholar 

  49. K. A. Mkhoyan, A. W. Contryman, J. Silcox, et al., Nano Lett., 9, N 3, 1058–1063 (2009).

    CAS  Google Scholar 

  50. A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B, 102, No. 23, 4477–4482 (1998).

    CAS  Google Scholar 

  51. S. Mikhailov (ed.), Physics and Applications of Graphene – Theory, InTech Open Access Publ., Rijeka (2011).

    Google Scholar 

  52. V. A. Smirnov, A. A. Arbuzov, Yu. M. Shul’ga, et al., Khim. Vysok. Énerg., 45, No. 1, 60–64 (2011).

    Google Scholar 

  53. Yu. M. Shul’ga, V. N. Vasilets, S. A. Baskakov, et al., High Energy Chem., 46, No. 2, 117–121 (2012).

    Google Scholar 

  54. S. Prezioso, F. Perrozzi, M. Donarelli, et al., Langmuir, 28, No. 12, 5489–5495 (2012).

    CAS  Google Scholar 

  55. B. Zhang, L. Li, Z. Wang, et al., J. Mater. Chem., 22, No. 16, 7775–7781 (2012).

    CAS  Google Scholar 

  56. Bon S. Bittolo, M. Piccinini, A. Mariani, et al., Diamond Rel. Mater., 20, No. 7, 871–874 (2011).

    Google Scholar 

  57. H.-H. Zhang, Q. Liu, K. Feng, et al., Langmuir, 28, No. 21, 8224–8229 (2012).

    CAS  Google Scholar 

  58. H.-C. Huang, C.-W. Huang, C.-T. Hsieh, et al., J. Phys. Chem. C, 115, No. 42, 20689–20695 (2011).

    CAS  Google Scholar 

  59. Y. Matsuo, K. Iwasa, T. Mimura, and Y. Tachibana, Carbon, 75, 271–276 (2014).

    CAS  Google Scholar 

  60. N. S. Andryushina, O. L. Stroyuk, I. B. Yanchuk, and A. V. Yefanov, Colloids Polym. Sci., 292, No. 2, 539–546 (2014).

    CAS  Google Scholar 

  61. M. Lotya, A. Rakovich, J. F. Donegan, and J. N. Coleman, Nanotechnology, 24, No. 26, 265703 (2013).

    Google Scholar 

  62. R. L. D. Whitby, V. M. Gun’ko, A. Korobeynik, et al., ACS Nano, 6, No. 5, 3967–3973 (2012).

    CAS  Google Scholar 

  63. L. Feng, L. Wu, and X. Qu, Adv. Mater., 25, No. 2, 168–186 (2013).

    CAS  Google Scholar 

  64. M. P. McDonald, A. Eltom, F. Vietmeyer, et al., Nano Lett., 13, No. 12, 5777–5784 (2013).

    CAS  Google Scholar 

  65. V. G. Plotnikov, V. A. Smirnov, M. V. Alfimov, and Y. M. Shul’ga, High Energy Chem., 45, No. 5, 411–415 (2011).

    CAS  Google Scholar 

  66. J. G. Calvert and J. N. Pitts, Jr., Photochemistry, John Wiley & Sons, New York (1966).

    Google Scholar 

  67. D. W. Lee, L. V. De Los Santos, J. W. Seo, et al., J. Phys. Chem. B, 114, No. 17, 5723–5728 (2010).

    CAS  Google Scholar 

  68. L. Yang, R. Zhang, B. Liu, et al., Angew. Chem. Int. Ed., 53, No. 38, 10109–10113 (2014).

    CAS  Google Scholar 

  69. J. A. Barltrop and J. D. Coyle, Excited States in Organic Chemistry, J. Wiley & Sons, London (1975).

    Google Scholar 

  70. Y. M. Shulga, V. M. Martynenko, V. E. Muradyan, et al., Chem. Phys. Lett., 498, Nos. 4–6, 287–291 (2010).

    CAS  Google Scholar 

  71. L. J. Cote, R. Cruz-Silva, and J. Huang, J. Am. Chem. Soc., 131, No. 31, 11027–11032 (2009).

    CAS  Google Scholar 

  72. S. Gilje, S. Dubin, A. Badakhshan, et al., Adv. Mater., 22, No. 3, 419–423 (2010).

    CAS  Google Scholar 

  73. L. Guardia, S. Villar-Rodil, J. I. Paredes, et al., Carbon, 50, No. 3, 1014–1024 (2012).

    CAS  Google Scholar 

  74. V. Abdelsayed, S. Moussa, H. M. Hassan, et al., J. Phys. Chem. Lett., 1, No. 19, 2804–2809 (2010).

    CAS  Google Scholar 

  75. L. Guo, R.-Q. Shao, Y.-L. Zhang, et al., J. Phys. Chem. C, 116, No. 5, 3594–3599 (2012).

    CAS  Google Scholar 

  76. V. Strong, S. Dubin, M. F. El-Kady, et al., ACS Nano, 6, No. 2, 1395–1403 (2012).

    CAS  Google Scholar 

  77. Y. Zhang, L. Guo, S. Wei, et al., Nano Today, 5, No. 1, 15–20 (2010).

    CAS  Google Scholar 

  78. R. Maiti, A. Midya, C. Narayana, and S. K. Ray, Nanotechnology, 25, No. 49, 495704 (2014).

    CAS  Google Scholar 

  79. S. Sasikaladevi, J. Aravind, V. Eswaraiah, and S. Ramaprabhu, J. Mater. Chem., 21, No. 43, 17094–17097 (2011).

    Google Scholar 

  80. J. Chen, X. Cui, Q. Wang, et al., J. Colloid Interface Sci., 383, No. 1, 140–147 (2012).

    CAS  Google Scholar 

  81. N. Zhang, R. Li, L. Zhang, et al., Soft Mater., 7, No. 16, 7231–7239 (2011).

    CAS  Google Scholar 

  82. Y. Guo, C. Bao, L. Song, et al., Ind. Eng. Chem. Res., 50, No. 13, 7772–7783 (2011).

    CAS  Google Scholar 

  83. Y. Huang, Y. Qin, Y. Zhou, et al., Chem. Mater., 22, No. 13, 4096–4102 (2010).

    CAS  Google Scholar 

  84. C. Wang, Q. Jin, Y. Wang, et al., Mater. Lett., 68, 280–282 (2012).

    CAS  Google Scholar 

  85. L. Ren, T. Liu, J. Guo, et al., Nanotechnology, 21, No. 33, 335701 (2010).

    Google Scholar 

  86. Z.-Q. Zhu, H.-X. Sun, X.-J. Qin, et al., J. Mater. Chem., 22, No. 11, 4811–4817 (2012).

    CAS  Google Scholar 

  87. Y. Huang, M. Zeng, J. Ren, et al., Colloids Surfaces A, 401, 97–106 (2012).

    CAS  Google Scholar 

  88. R. Feng, W. Zhou, G. Guan, et al., J. Mater. Chem., 22, No. 9, 3982–3989 (2012).

    CAS  Google Scholar 

  89. B. Zhang, Y. Zhang, C. Peng, et al., Nanoscale, 4, No. 5, 1742–1748 (2012).

    Google Scholar 

  90. A. I. Kryukov, V. P. Sherstyuk, and I. I. Dilung, Electron Phototransfer and Its Applied Aspects [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  91. Xh. S. Bagdasar’yan, Theory of Radical Polymerization [in Russian], Moscow, Nauka (1966).

    Google Scholar 

  92. A. L. Stroyuk, I. V. Sobran, A. V. Korzhak, et al., Colloid Polymer Sci., 286, No. 5, 489–498 (2008).

    CAS  Google Scholar 

  93. H. Li, S. Pang, X. Feng, et al., Chem. Commun., 46, No. 34, 6243–6245 (2010).

    CAS  Google Scholar 

  94. G. Moon,Y. Park, W. Kim, and W. Choi, Carbon, 49, No. 11, 3454–3462 (2011).

    CAS  Google Scholar 

  95. H. Li, S. Pang, S. Wu, et al., J. Am. Chem. Soc., 133, No. 24, 9423–9429 (2011).

    CAS  Google Scholar 

  96. H. Li, J. Gupta, S. Wang, et al., J. Colloid Interface Sci., 427, 25–28 (2014).

    CAS  Google Scholar 

  97. M. A. Khaderbad, V. Tjoa, T. Z. Oo, et al., RSC Adv., 2, No. 10, 4120–4124 (2012).

    CAS  Google Scholar 

  98. G. Williams, B. Seger, and P. V. Kamat, ACS Nano, 2, No. 7, 1487–1491 (2008).

    CAS  Google Scholar 

  99. S. R. Kim, Md. K. Parvez, and M. Chhowalla, Chem. Phys. Lett., 483, Nos. 1–3, 124–127 (2009).

    CAS  Google Scholar 

  100. I. V. Lightcap, T. H. Kosel, and P. V. Kamat, Nano Lett., 10, No. 2, 577–583 (2010).

    CAS  Google Scholar 

  101. T. N. Lambert, C. A. Chavez, N. S. Bell, et al., Nanoscale, 3, No. 1, 188–191 (2011).

    CAS  Google Scholar 

  102. W. Fan, Q. Lai, Q. Zhang, and Y. Wang, J. Phys. Chem. C, 115, No. 21, 10694–10701 (2011).

    CAS  Google Scholar 

  103. H.-B. Yao, L.-H. Wu, C.-H. Cui, et al., J. Mater. Chem., 20, No. 25, 5190–5195 (2010).

    CAS  Google Scholar 

  104. Y. Dai, Y. Jing, J. Zeng, et al., J. Mater. Chem., 21, No. 45, 18174–18179 (2011).

    CAS  Google Scholar 

  105. H. Kim, G. Moon, D. Monllor-Satoca, et al., J. Phys. Chem. C, 116, No. 1, 1535–1543 (2012).

    CAS  Google Scholar 

  106. O. Akhavan and E. Ghaderi, J. Phys. Chem. C, 113, No. 47, 20214–20220 (2009).

    CAS  Google Scholar 

  107. G. Williams and P. V. Kamat, Langmuir, 25, No. 24, 13869–13873 (2009).

    CAS  Google Scholar 

  108. O. Akhavan, Carbon, 49, No. 1, 11–18 (2011).

    CAS  Google Scholar 

  109. O. Akhavan, ACS Nano, 4, No. 7, 4174–4180 (2010).

    CAS  Google Scholar 

  110. J. Qin, M. Cao, N. Li, and C. Hu, J. Mater. Chem., 21, No. 43, 17167–17174 (2011).

    CAS  Google Scholar 

  111. Y. H. Ng, A. Iwase, N. J. Bell, et al., Catal. Today, 164, No. 1, 353–357 (2011).

    CAS  Google Scholar 

  112. D. M. Jang, Y. Myung, H. S. Im, et al., Chem. Commun., 48, No. 5, 696–698 (2012).

    CAS  Google Scholar 

  113. T. Wu, S. Liu, Y. Luo, et al., Nanoscale, 3, No. 5, 2142–2144 (2011).

    CAS  Google Scholar 

  114. J. S. Lee, K. H. You, and C. B. Park, Adv. Mater., 24, No. 8, 1084–1088 (2012).

    CAS  Google Scholar 

  115. L. Ren, X. Qi, Y. Liu, et al., J. Mater. Chem., 22, No. 23, 11765–11771 (2012).

    CAS  Google Scholar 

  116. H. Zhang, X. Lv, Y. Li, et al., ACS Nano, 4, No. 1, 380–386 (2010).

    CAS  Google Scholar 

  117. Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, ACS Nano, No. 12, 7303–7314 (2010).

  118. C. Chen, W. Cai, M. Long, et al., ACS Nano, No. 11, 6425–6432 (2010).

  119. G. Jiang, Z. Lin, C. Chen, et al., Carbon, 49, No. 8, 2693–2701 (2011).

    CAS  Google Scholar 

  120. S. Liu, C. Liu, W. Wang, et al., Nanoscale, 4, No. 8, 3193–3200 (2012).

    CAS  Google Scholar 

  121. Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, ACS Nano, 5, No. 9, 7426–7435 (2011).

    CAS  Google Scholar 

  122. M.-Q. Yang, N. Zhang, and Y.-J. Xu, ACS Appl. Mater. Interfaces, 5, No. 3, 1156–1164 (2013).

    CAS  Google Scholar 

  123. W. Wang, J. Yu, Q. Xiang, and B. Cheng, Appl. Catal. B, 119/120, 109–116 (2012).

    Google Scholar 

  124. O. Akhavan, M. Choobtashani, and E. Ghaderi, J. Phys. Chem. C, 116, No. 17, 9653–9659 (2012).

    CAS  Google Scholar 

  125. W. Tu, Y. Zhou, Q. Liu, et al., Adv. Func. Mater., 22, No. 6, 1215–1221 (2012).

    CAS  Google Scholar 

  126. Y. T. Liang, B. K. Vijayan, K. A. Gray, and M. C. Hersam, Nano Lett., 11, No. 7, 2865–2870 (2011).

    CAS  Google Scholar 

  127. Q. Xiang and J. Yu, J. Phys. Chem. Lett., 4, No. 5, 753–759 (2013).

    CAS  Google Scholar 

  128. Q. Xiang, J. Yu, and M. Jaroniec, J. Am. Chem. Soc., 134, No. 15, 6575–6578 (2012).

    CAS  Google Scholar 

  129. Y. Zhang, N. Zhang, Z.-R. Tang, and Y.-J. Xu, ACS Nano, 6, No. 11, 9777–9789 (2012).

    CAS  Google Scholar 

  130. H. Ma, J. Shen, M. Shi, et al., Appl. Catal. B, 121/122, 198–205 (2012).

    Google Scholar 

  131. X. An, J. C. Yu, Y. Wang, et al., J. Mater. Chem., 22, No. 17, 8525–8531 (2012).

    CAS  Google Scholar 

  132. Q. Li, B. Guo, J. Yu, et al., J. Am. Chem. Soc., 133, No. 28, 10878–10884 (2011).

    CAS  Google Scholar 

  133. W. Fan, Q. Lai, Q. Zhang, and Y. Wang, J. Phys. Chem. C, 115, No. 21, 10694–10701 (2011).

    CAS  Google Scholar 

  134. Q. Zhang, C. Tian, A. Wu, et al., J. Mater. Chem., 22, No. 23, 11778–11784 (2012).

    CAS  Google Scholar 

  135. S. Liu, Z. Chen, N. Zhang, et al., J. Phys. Chem. C, 117, No. 16, 8251–8261 (2013).

    CAS  Google Scholar 

  136. Z. Chen, S. Liu, M.-Q. Yang, and Y.-J. Xu, ACS Appl. Mater. Interfaces, 5, No. 10, 4309–4319 (2013).

    CAS  Google Scholar 

  137. L. Zhang, L. Du, X. Cai, et al., Physica E, 47, 279–284 (2013).

    CAS  Google Scholar 

  138. N. Zhang, Y. Zhang, M.-Q. Yang, et al., J. Catal., 299, 210–221 (2013).

    CAS  Google Scholar 

  139. Q. Xiang, J. Yu, and M. Jaroniec, Chem. Soc. Rev., 41, No. 2, 782–796 (2012).

    CAS  Google Scholar 

  140. J. C. Yang, M. W. Small, R. V. Grieshaber, and R. G. Nuzzo, Chem. Soc. Rev., 41, No. 24, 8179–8194 (2012).

    CAS  Google Scholar 

  141. Y. Shi and L.-J. Li, J. Mater. Chem., 21, No. 10, 3277–3279 (2011).

    CAS  Google Scholar 

  142. H. W. Choi, T. Zhou, M. Singh, and G. E. Jabbour, Nanoscale, 2015, doi: 10.1039/C4NR03915G.

    Google Scholar 

  143. B. C. Gross, J. L. Erkal, S. Y. Lockwood, et al., Anal. Chem., 86, No. 7, 3240–3252 (2014).

    CAS  Google Scholar 

  144. K. K. Manga, S. Wang, M. Jaiswal, et al., Adv. Mater., 22, No. 46, 5265–5270 (2010).

    CAS  Google Scholar 

  145. Q. Mei and Z. Zhang, Angew. Chem. Int. Ed., 51, No. 23, 5602–5606 (2012).

    CAS  Google Scholar 

  146. J. H. Kim, W. S. Chang, D. Kim, et al., Adv. Mater., 27, No. 1, 157–161 (2015).

    CAS  Google Scholar 

  147. A. Thomas, A. Fischer, F. Goettman, et al., J. Mater. Chem., 18, No. 41, 4893–4908 (2008).

    CAS  Google Scholar 

  148. P. Niu, L. Zhang, G. Liu, and H.-M. Cheng, Adv. Func. Mater., 22, No. 22, 4763–4770 (2012).

    CAS  Google Scholar 

  149. X. Lang, X. Chen, and J. Zhao, Chem. Soc. Rev., 43, No. 1, 473–486 (2014).

    CAS  Google Scholar 

  150. S. Liu, T. H. Zeng, M. Hofmann, et al., ACS Nano, 5, No. 9, 6971–6980 (2011).

    CAS  Google Scholar 

  151. R. Lv and M. Terrones, Mater. Lett., 78, 209–218 (2012).

    CAS  Google Scholar 

  152. Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, ACS Nano, 5, No. 9, 7426–7435 (2011).

    CAS  Google Scholar 

  153. Y. H. Ng, I. V. Lightcap, K. Goodwin, et al., J. Phys. Chem. Lett., 1, No. 15, 2222–2227 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Stroyuk.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 51, No. 1, pp. 1–26, January-February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stroyuk, O.L., Andryushina, N.S., Kuchmy, S.Y. et al. Photochemical Processes Involving Graphene Oxide. Theor Exp Chem 51, 1–29 (2015). https://doi.org/10.1007/s11237-015-9393-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-015-9393-y

Key words

Navigation