Skip to main content
Log in

Morphology of carbon nanotubes, obtained by decomposition of ethylene on nickel nanoparticles at various rates of flow and concentration of C2H4

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

The influence of flow rate and concentration of source of hydrocarbon on the properties of the carbon nanotubes formed in the process of thermal decomposition of ethylene on nickel nanoparticles have been investigated. Changes in the rate of gaseous flow has practically no effect on the specific yield and the mean diameter of the nanotubes. However, an increase in the mean diameter and a decrease in the value of the specific yield occurs with increase in the concentration of ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rao, D. Jacques, R. C. Haddon, et al., Appl. Phys. Lett., 76, 3813–3815 (2000).

    Article  CAS  Google Scholar 

  2. P. Serp, M. Corrias, and P. Kalck, Appl. Catal. A., 253, 337–358 (2004).

    Google Scholar 

  3. A. P. Ramirez, Bells Labs Tech. J., 10, No. 3, 171–185 (2005).

    Article  Google Scholar 

  4. É. G. Rakov, Usp. Khim., 76, No. 1, 3–26 (2007).

    Google Scholar 

  5. H. Kenji, N. F. Don, M. Kohei, et al., Science, 306, 1362–1364 (2004).

    Article  Google Scholar 

  6. Md. Shajahan, Y. H. Mo, A. K. M. Fazle Kibria, et al., Carbon, 42, 2245–2253 (2004).

    Article  CAS  Google Scholar 

  7. A. Morançais, B. Caussat, Y. Khin, et al., Carbon, 45, 624–635 (2007).

    Article  Google Scholar 

  8. V. A. Khavrus’, N. V. Lemesh, S. V. Gordeichuk, et al., Teor. Éksp. Khim., 42, No. 4, 227–230 (2006). [Theor. Experim. Chem., 42, No. 4, 234–238 (2006) (Engl. Transl.).]

    Google Scholar 

  9. J. Lefebvre, R. Antonov, and A. T. Johnson, Phys. A, 67, No. 1, 71–74 (1998).

    CAS  Google Scholar 

  10. A. Barreiro, C. Kramberger, M. H. Rümmeli, et al., Carbon, 45, 55–61 (2007).

    Article  CAS  Google Scholar 

  11. A. K. M. Fazle Kibria, Y. H. Mo, and K. S. Nahm, Catal. Lett., 71, Nos. 3/4, 229–236 (2001).

    Article  CAS  Google Scholar 

  12. A. M. Cassell, J. A. Raymakers, J. Kong, and H. Dai, J. Phys. Chem., 103, 6484–6492 (1999).

    CAS  Google Scholar 

  13. R. T. K. Baker, Carbon, 27, No. 3, 315–323 (1989).

    Article  CAS  Google Scholar 

  14. R. A. Byyanov and V. V. Chesnokov, Khim. Interes. Ustoich. Razvit., 3, No. 3, 177–186 (1995).

    Google Scholar 

  15. Y. Li, W. Kim, Y. Zhang, et al., J. Phys. Chem. B, 105, 11424–11431 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Lemesh.

Additional information

__________

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 44, No. 4, pp. 228–232, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripol’skii, A.I., Lemesh, N.V., Khavrus’, V.A. et al. Morphology of carbon nanotubes, obtained by decomposition of ethylene on nickel nanoparticles at various rates of flow and concentration of C2H4 . Theor Exp Chem 44, 240–244 (2008). https://doi.org/10.1007/s11237-008-9034-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-008-9034-9

Key words

Navigation