Skip to main content

Advertisement

Log in

An improved high performance clustering based routing protocol for wireless sensor networks in IoT

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The Internet of Things encompasses applications such as ecological, medicinal, and defense surveillance that need real-time data collecting and standardization.Wireless sensor networks are essential in this scenario as an inclusive environment platform for these important applications. Sensor nodes have a limited capacity for resource management, storage systems, communication, and computational power. As a result of corrupted nodes, data becomes vulnerable to unauthorized access. This research proposes an improved high-performance cluster-based secure routing protocol, a reliable and energy-efficient framework. The key feature of this protocol is that it considers aspects such as energy, packet mitigation, congestion management, encrypted data transfer, and attacker node surveillance to improve the data management quality. Due to network isolation segmentation problems in the wireless sensor nodes, nodes may eventually be unable to interact with the base station and nodes are not alive. Metrics including ransomware attack detection rate, ergodic residual energy over rounds, early detection of clone attack throughput maximization, delay, capacity maximization and network lifetime have been used to demonstrate the viability of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data available on request due to privacy/ethical restrictions.

References

  1. Sapavath, N. N., & Rawat, D. B. (2020). Wireless virtualization architecture: wireless networking for internet of things. IEEE Internet of Things Journal, 7(7), 5946–5953.

    Article  Google Scholar 

  2. Raja, L., Periasamy, P. S. (2022). A Trusted distributed routing scheme for wireless sensor networks using block chain and jelly fish search optimizer based deep generative adversarial neural network (Deep-GANN) technique. Wireless Personal Communications, 126, 1101–1128.

    Article  Google Scholar 

  3. Wang, J., Jin, C., Tang, Q., Xiong, N. N., & Srivastava, G. (2021). Intelligent ubiquitous network accessibility for wireless-powered MEC in UAV-assisted B5G. IEEE Transactions on Network Science and Engineering, 8(4), 2801–2813.

    Article  Google Scholar 

  4. Liu, J., Duan, Y., Wu, Y., Chen, R., Chen, L., & Chen, G. (2021). Information flow perception modeling and optimization of Internet of Things for cloud services. Future Generation Computer Systems, 115, 671–679.

    Article  Google Scholar 

  5. Zhu, Y., Yan, F., Zhao, S., Xing, S., & Shen, L. (2021). On improving the cooperative localization performance for IoT WSNs. Ad Hoc Networks, 118, 102504.

    Article  Google Scholar 

  6. Kouachi, A. I., Bachir, A., & Lasla, N. (2021). Anonymizing communication flow identifiers in the Internet of Things. Computers & Electrical Engineering, 91, 107063.

    Article  Google Scholar 

  7. Ortiz, G., Zouai, M., Kazar, O., Garcia-de-Prado, A., & Boubeta-Puig, J. (2022). Atmosphere: Context and situational-aware collaborative IoT architecture for edge-fog-cloud computing. Computer Standards & Interfaces, 79, 103550.

    Article  Google Scholar 

  8. Serrano, W. (2021). The block chain random neural network for cyber secure IoT and 5G infrastructure in smart cities. Journal of Network and Computer Applications, 175, 102909.

    Article  Google Scholar 

  9. Shen, S., Zhou, H., Feng, S., Huang, L., Liu, J., Yu, S., & Cao, Q. (2019). HSIRD: A model for characterizing dynamics of malware diffusion in heterogeneous WSNs. Journal of Network and Computer Applications, 146, 102420.

    Article  Google Scholar 

  10. Wang, J., Han, H., Li, H., He, S., Kumar Sharma, P., & Chen, L. (2022). Multiple strategies differential privacy on sparse tensor factorization for network traffic analysis in 5G. IEEE Transactions on Industrial Informatics, 18(3), 1939–1948.

    Article  Google Scholar 

  11. Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). Residual energy-based cluster-head selection in wsns for IOT application. IEEE Internet of Things Journal, 6(3), 5132–5139.

    Article  Google Scholar 

  12. Moridi, E., Haghparast, M., Hosseinzadeh, M., & JafaraliJassbi, S. (2020). Novel fault-tolerant clustering-based multipath algorithm (FTCM) for wireless sensor networks. Telecommunication Systems, 74(4), 411–424.

    Article  Google Scholar 

  13. Jain, S., Pattanaik, K. K., Verma, R. K., Bharti, S., & Shukla, A. (2021). Delay-aware green routing for mobile-sink-based wireless sensor networks. IEEE Internet of Things Journal, 8(6), 4882–4892.

    Article  Google Scholar 

  14. Haseeb, K., Almogren, A., Islam, N., Ud Din, I., & Jan, Z. (2019). An energy-efficient and secure routing protocol for intrusion avoidance in IoT-based WSN, Energies, 12(21), 4174.

  15. Lin, J.-W., Chelliah, P. R., Hsu, M.-C., & Hou, J.-X. (2019). Efficient fault-tolerant routing in iot wireless sensor networks based on bipartite-flow graph modeling. IEEE Access, 7, 14022–14034.

    Article  Google Scholar 

  16. Lenka, R. K., Rath, A. K., & Sharma, S. (2019). Building reliable routing infrastructure for green IoT network. IEEE Access, 7, 129892–129909.

    Article  Google Scholar 

  17. Haseeb, K., Islam, N., Almogren, A., & Ud Din, I. (2019). Intrusion prevention framework for secure routing in WSN-based mobile Internet of Things, IEEE Access,. 7, 185496–185505.

  18. Xu, C., Xiong, Z., Zhao, G., & Yu, S. (2019). An energy-efficient region source routing protocol for lifetime maximization in WSN. IEEE Access, 7, 135277–135289.

    Article  Google Scholar 

  19. Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2020). I-SEP: An improved routing protocol for heterogeneous WSN for IoT-based environmental monitoring. IEEE Internet of Things Journal, 7(1), 710–717.

    Article  Google Scholar 

  20. Chanak, P., & Banerjee, I. (2020). Congestion free routing mechanism for IoT-enabled wireless sensor networks for smart healthcare applications. IEEE Transactions on Consumer Electronics, 66(3), 223–232.

    Article  Google Scholar 

  21. Javaid, N., Cheema, S., Akbar, M., Alrajeh, N., Alabed, M. S., & Guizani, N. (2017). Balanced energy consumption based adaptive routing for IoT enabling underwater WSNs. IEEE Access, 5, 10040–10051.

    Article  Google Scholar 

  22. Shende, D. K., & Sonavane, S. S. (2020). CrowWhale-ETR: CrowWhale optimization algorithm for energy and trust aware multicast routing in WSN for IoT applications. Wireless Networks, 26(6), 4011–4029.

    Article  Google Scholar 

  23. Roberts, M. K., & Ramasamy, P. (2022). Optimized hybrid routing protocol for energy-aware cluster head selection in wireless sensor networks. Digital Signal Processing, 130, 103737.

    Article  Google Scholar 

  24. Singh, S., & Saini, H. S. (2020). PCTBC: Power control tree-based cluster approach for sybil attack in wireless sensor networks. Journal of Circuits, Systems and Computers, 30(07), 2150129.

    Article  Google Scholar 

  25. Tong, X., Liu, J., Wang, Z., Zhang, M., Chen, H., & Ma, J. (2021). Cluster space key management scheme based on threshold secret sharing and bilinear pairing. International Journal of Satellite Communications and Networking, 39(6), 686–704.

    Article  Google Scholar 

  26. Rathore, P. S., Chatterjee, J. M., Kumar, A., & Sujatha, R. (2021). Energy-efficient cluster head selection through relay approach for WSN. The Journal of Supercomputing, 77(7), 7649–7675.

    Article  Google Scholar 

  27. Gong, S., Liu, X., Zheng, K., Lu, W., & Zhu, Y. (2021). TDMA scheduling schemes targeting high channel utilization for energy harvesting wireless sensor networks. IET Communications, 15(16), 2097–2110.

    Article  Google Scholar 

  28. Omolara, A. E., Alabdulatif, A., Abiodun, O. I., Alawida, M., Alabdulatif, A., Alshoura, W. H., & Arshad, H. (2022). The internet of things security: A survey encompassing unexplored areas and new insights. Computers & Security, 112, 102494.

    Article  Google Scholar 

  29. Angurala, M., Bala, M., & Bamber, S. S. (2021). A novel technique for energy replenishment and load balancing in wireless sensor networks. Optik, 248, 168136.

    Article  Google Scholar 

  30. Liu, X., & Zhang, P. (2018). Data drainage: A novel load balancing strategy for wireless sensor networks. IEEE Communications Letters, 22(1), 125–128.

    Article  Google Scholar 

  31. Maheshwari, P., Sharma, A. K., & Verma, K. (2021). Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization. Ad Hoc Networks, 110, 102317.

    Article  Google Scholar 

  32. Torkzadeh, S., Soltanizadeh, H., & Orouji, A. A. (2021). Energy-aware routing considering load balancing for SDN: A minimum graph-based ant colony optimization. Cluster Computing, 24(3), 2293–2312.

    Article  Google Scholar 

  33. Kaur, G., Chanak, P., & Bhattacharya, M. (2021). Energy-efficient intelligent routing scheme for ioT-enabled WSNs. IEEE Internet of Things Journal, 8(14), 11440–11449.

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaelraj Kingston Roberts.

Ethics declarations

Conflict of interest

The author explicitly declares that there is no conflict of interest pertaining to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, M.K., Ramasamy, P. An improved high performance clustering based routing protocol for wireless sensor networks in IoT. Telecommun Syst 82, 45–59 (2023). https://doi.org/10.1007/s11235-022-00968-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00968-1

Keywords

Navigation