Skip to main content

Advertisement

Log in

Analysis of energy saving in user equipment in LTE-A using stochastic modelling

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Energy saving in User Equipment (UE) is one of the important issues for limited sources of power in the device. It is critical for the UE to maximize its energy efficiency. In this paper, we have presented two stochastic models, namely the Markov model and semi-Markov model, for the UE based on the states of discontinuous reception (DRX) mechanism, i.e., a power saving method in mobile communication networks. Explicit expressions are derived for transient and steady-state system size probabilities for the Markov model. For the semi-Markov model, steady-state probabilities are computed. Further, the performance measures such as mean and variance are computed for both models. Using these models, based on the states of DRX mechanism, energy saving in the UE is calculated. Finally, sensitivity analysis is performed in which the results obtained are compared for both models. Numerical results obtained in this paper ensure that energy saving can be maximized in the UE using the Markov modelling of DRX mechanism rather than semi-Markov modelling. The energy saving using the Markov model is atleast 33.19\(\%\) more than the semi-Markov model. Also, for energy saving in the UE, the semi-Markov model for DRX mechanism is compared with the Markov model. The semi-Markov models for the DRX mechanism are available in the literature without considering the packet arrivals. Our analysis of DRX mechanism and conclusion on its performance can be designed and implemented to an extension for the existing DRX mechanism. We believe that, these models can also be extended to study the energy saving of hardware and other components of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jung, J., Marakhimov, A., & Baek, J. H. (2020). Improvement and performance analysis of a power-saving mechanism considering traffic patterns. The Journal of Supercomputing, 76, 8214–8224.

    Article  Google Scholar 

  2. Dharmaraja, S., Vinayak, R., & Trivedi, K. S. (2016). Reliability and survivability of vehicular Ad hoc networks: An analytical approach. Reliability Engineering and System Safety, 153, 28–38.

    Article  Google Scholar 

  3. Jones, C., Sivalingam, M., Agrawal, P., & Chen, J. (2001). A survey of energy efficient network protocols for wireless networks. Wireless Networks, 7(4), 343–358.

    Article  Google Scholar 

  4. D’Amico, G., Petroni, F., & Prattico, F. (2015). Reliability measures for indexed semi-Markov chains applied to wind energy production. Reliability Engineering and System Safety, 144, 170–177.

    Article  Google Scholar 

  5. Gupta, V., & Dharmaraja, S. (2011). Semi-Markov modeling of VoIP dependability in the presence of resource degradation and security attacks. Reliability Engineering and System Safety, 96, 1627–1636.

    Article  Google Scholar 

  6. T. Kim & Kim, Y. (2019). Dynamic PDCCH adaptation based on DMRS Detection for UE Power Saving in 5G New Radio. In Proceedings of IEEE vehicular technology conference (VTC-Fall), Honolulu, HI, USA, pp. 1–2.

  7. Jensen, A.R., Lauridsen, M., Mogensen, P., Sørensen, T.B., & Jensen, P. (2012). LTE UE power consumption model: For system level energy and performance optimization. In Proceedings of IEEE vehicular technology conference, pp. 1–5.

  8. Hoffmann, M., Kryszkiewicz, P., & Kliks, A. (2021). Increasing energy efficiency of massive-MIMO network via base stations switching using reinforcement learning and radio environment maps. Computer Communications, 169, 232–242.

    Article  Google Scholar 

  9. Jayadia, R., Lai, Y.-C., & Chen, L.-C. (2018). An interleaved-sleeping-listening scheduler for power saving in mobile stations. Computers & Electrical Engineering, 67, 278–290.

    Article  Google Scholar 

  10. Wu, J., & Park, J. (2021). Analysis of discontinuous reception (DRX) on energy efficiency and transmission delay with bursty packet data traffic. Annals of Telecommunications, 76, 429–446.

    Article  Google Scholar 

  11. Wang, C., Li, C. M., & Ting, K. C. (2017). Energy-efficient and QoS-aware discontinuous reception using a multi-cycle mechanism in 3GPP LTE/LTE-advanced. Telecommunication Systems, 64, 599–615.

    Article  Google Scholar 

  12. Gautam, A., Choudhury, G., & Dharmaraja, S. (2020). Performance analysis of DRX mechanism using batch arrival vacation queueing system with N-policy in LTE-A networks. Annals of Telecommunications, 75, 353–367.

    Article  Google Scholar 

  13. Yin, F. (2012). An application aware discontinuous reception mechanism in LTE-advanced with carrier aggregation consideration. Annals of Telecommunications, 67, 147–159.

    Article  Google Scholar 

  14. Chavarria-Reyes, E., Fadel, E., Almasri, S., & Malik, M. G. A. (2016). Reducing the energy consumption at the user equipment through multi-stream crosscarrier-aware discontinuous reception (DRX) in LTE-Advanced systems. Journal of Network and Computer Applications, 64, 43–61.

    Article  Google Scholar 

  15. Arunsundar, B., Sakthivel, P., & Natarajan, E. (2020). Analysis of energy consumption and latency in advanced wireless networks through DRX mechanism. Journal of Supercomputer, 76, 3765–3787.

    Article  Google Scholar 

  16. Varma, R.S., Sivalingam, K.M., Tung, L.-P., & Lin, Y.-D. (2015). Analytical model for power savings in LTE networks using DRX mechanism. In National conference on communications (NCC), pp. 1–6.

  17. Ramazanali, H., & Vinel, A. (2016). Performance evaluation of LTE/LTE-A DRX: A Markovian approach. IEEE Internet of Things Journal, 3(3), 386–397.

    Article  Google Scholar 

  18. Maheshwari, M. K., Agiwal, M., & Masud, A. R. (2018). Analytical modeling of DRX with flexible TTI for 5G communications. Transactions on Emerging Telecommunications Technologies, 29(2), e3275.

    Article  Google Scholar 

  19. Maheshwari, M. K., Agiwal, M., & Masud, A. R. (2021). Analytical modeling for signaling-based DRX in 5G communication. Transactions on Emerging Telecommunications Technologies, 32, e4125.

    Google Scholar 

  20. Zhou, L., Xu, H., Tian, H., Gao, Y., Du, L., & Chen, L. (2008). Performance analysis of power saving mechanism with adjustable DRX cycles in 3GPP LTE. In Proceedings of IEEE Vehicular Technology Conference, Calgary, BC, pp. 1–5.

  21. Zhou, K., Nikaein, N., & Spyropoulos, T. (2013). LTE/LTE-A discontinuous reception modeling for machine type communications. IEEE Wireless Communications Letters, 2(1), 102–105.

    Article  Google Scholar 

  22. Mihov, Y.Y., Kassev, K.M., & Tsankov, B.P. (2010). Analysis and performance evaluation of the DRX mechanism for power saving in LTE. In IEEE Convention of electrical and electronics engineers in Israel, Eilat, Israel, pp. 520–524.

  23. Maheshwari, M. K., Roy, A., & Saxena, N. (2019). DRX over LAA-LTE-A new design and analysis based on Semi-Markov model. IEEE Transactions on Mobile Computing, 18(2), 276–289.

    Article  Google Scholar 

  24. Gódor, I. (2019). Revitalizing DRX for enhanced mobile sleep modes. Computer Communications, 138, 98–105.

    Article  Google Scholar 

  25. Asif, Md., Islam, Md., Tabassum, F., & Amin, M. R. (2020). The tradeoff between mean delay and energy saving factor under DRX scheme. International Journal of Computer Applications, 975, 8887.

    Google Scholar 

  26. Kim, S., Jung, K., Choi, J., & Kwak, Y. (2014). Improving LTE/LTE-A UE power efficiency with extended DRX cycle. In Proceedings of IEEE vehicular technology conference, Vancouver, BC, pp. 1–5.

  27. Tseng, C., Wang, H., Kuo, F., Ting, K., Chen, H., & Chen, G. (2015). Delay and power consumption in LTE/LTE-A DRX mechanism with mixed short and long cycles. Proceedings of IEEE Transactions of Vehicular Technology, 65(3), 1721–1734.

    Article  Google Scholar 

  28. Moradi, F., Fitzgerald, E., Pióro, M., & Landfeldt, B. (2020). Flexible DRX optimization for LTE and 5G. Proceedings of IEEE Transactions on Vehicular Technology, 69(1), 607–621.

    Article  Google Scholar 

  29. Tung, L.-P., Lin, Y.-D., Kuo, Y.-H., Lai, Y.-C., & Sivalingam, K. M. (2014). Reducing power consumption in LTE data scheduling with the constraints of channel condition and QoS. Computer Networks, 75, 149–159.

    Article  Google Scholar 

  30. Lauridsen, M., Wang, H., & Mogensen, P. (2013). LTE UE energy saving by applying carrier aggregation in a HetNet scenario. In Proceedings of IEEE vehicular technology conference (VTC Spring), pp. 1–5.

  31. Lauridsen, M., Mogensen, P., & Noel, L. (2013). Empirical LTE smartphone power model with drx operation for system level simulations. In Proceedings of IEEE vehicular technology conference (VTC Fall), Las Vegas, NV, pp. 1–6.

  32. Lauridsen, M., Jensen, A.R. & Mogensen, P. (2012). Fast control channel decoding for LTE UE power saving. In Proceedings of IEEE vehicular technology conference (VTC Spring), Yokohama, pp. 1–5.

  33. Gautam, A., & Dharmaraja, S. (2019). Selection of DRX scheme for voice traffic in LTE-A networks: Markov modeling and performance analysis. Journal of Industrial and Management Optimization (JIMO), 15, 739–756.

    Article  Google Scholar 

  34. Kolding, T.E., Wigard, J., & Dalsgaard, L. (2008). Balancing power saving and single user experience with discontinuous reception in LTE. In IEEE International symposium on wireless communication systems, pp. 713–717.

  35. Castaneda, L. B., Arunachalam, V., & Dharmaraja, S. (2012). Introduction to probability and stochastic processes with applications. Wiley.

Download references

Funding

One of the authors S. Dharmaraja thanks Bharti Airtel Limited, India, for financial support in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dharmaraja.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix 1

Let \(f_{i,j}(s)\) represents the Laplace transform of \(P_{i,j}(t)\). Taking Laplace transform of (4), we get

$$\begin{aligned} (s+ \alpha )f_{0,1}(s) = \beta f_{0,0}(s). \end{aligned}$$
(15)

On the inversion of the above equation, we have

$$\begin{aligned} P_{0,1}(t) = \beta e^{-\alpha t}* P_{0,0}(t), \end{aligned}$$

where ’\(*\)’ represents the convolution of functions. Taking Laplace transform on Equation (5), we have

$$\begin{aligned} f_{0,j}(s) = \frac{ (\alpha - \lambda )}{(s+ \alpha )}f_{0,j-1}(s),~ j = 2,3,\ldots ,N \end{aligned}$$

which recursively yields,

$$\begin{aligned} f_{0,j}(s) = \frac{ (\alpha - \lambda )^{j-1}}{(s+ \alpha )^{j-1}}f_{0,1}(s), ~j = 2,3,\ldots ,N. \end{aligned}$$

Using equation (15) in above equation, we obtain

$$\begin{aligned} f_{0,j}(s) = \frac{\beta (\alpha - \lambda )^{j-1}}{(s+ \alpha )^{j}}f_{0,0}(s), ~j = 1,2,\ldots ,N. \end{aligned}$$
(16)

On inversion of equation (16), we obtain the required transient probabilities \(P_{0,j}(t)\), \(j = 1,2,\ldots ,N. \) Now, taking Laplace transform on (6), we get

$$\begin{aligned} f_{0,N+1}(s) = \frac{(\alpha - \lambda )}{(s+\nu )}f_{0,N}(s). \end{aligned}$$

Using (16) for \(j = N\) in above equation, we obtain

$$\begin{aligned} f_{0,N+1}(s) = \frac{\beta (\alpha - \lambda )^{N}}{(s+\nu )(s+ \alpha )^{N}}f_{0,0}(s). \end{aligned}$$
(17)

Inversion yields,

$$\begin{aligned} P_{0,N+1}(t) = \beta (\alpha - \lambda )^{N} e^{-\nu t}*e^{-\alpha t}\frac{t^{N-1}}{(N-1)! }* P_{0,0}(t). \end{aligned}$$

Taking Laplace transform of (7), we get

$$\begin{aligned} f_{i,N+1}(s) = \frac{\lambda }{(s+ \nu )}f_{i-1,N+1}(s), ~i = 1, 2, \ldots \end{aligned}$$

which recursively yields,

$$\begin{aligned} f_{i,N+1}(s) = (\frac{\lambda }{s+ \nu })^i f_{0,N+1}(s), ~i = 1, 2, \ldots . \end{aligned}$$

Using (17) in above equation, we obtain

$$\begin{aligned} f_{i,N+1}(s) = \frac{\beta \lambda ^i (\alpha - \lambda )^{N}}{(s+\nu )^{i+1}(s+ \alpha )^{N}}f_{0,0}(s), ~i = 0, 1, \ldots .\nonumber \\ \end{aligned}$$
(18)

Taking inverse Laplace transform of (18) yields the required transient probabilities \(P_{i,N+1}(t)\), \(i = 0,1,\ldots \).

Appendix 2

Define a generating function with coefficients as the transient probabilities of working states,

$$\begin{aligned} G(z,t) = P_{0,0} (t) +\sum _{i=1}^{\infty } P_{i,0} (t) z^i. \end{aligned}$$

Then,

$$\begin{aligned} \frac{\partial G(z,t)}{\partial z} = P_{0,0}^{'} (t) +\sum _{i=1}^{\infty } P_{i,0}^{'} (t) z^i. \end{aligned}$$

Substituting (1), (2) and (3) in the above equation, we get

$$\begin{aligned} \frac{\partial G(z,t)}{\partial z}&- \bigg (\lambda z + \frac{\mu }{z} - (\mu + \lambda )\bigg )G(z,t) \\&=-\bigg (\beta + \frac{\mu }{z} - \mu \bigg ) P_{0,0} (t)\\&+ (\nu - \lambda )\sum _{i=0}^{\infty } P_{i,N+1} (t) z^i + \lambda z \sum _{i=1}^{N} P_{0,i} (t). \end{aligned}$$

Solving the above partial differential equation, we obtain

$$\begin{aligned}&G(z,t) = -\bigg (\beta + \frac{\mu }{z} - \mu \bigg )\int _{0}^{t} P_{0,0} (y) e^{\big (\lambda z + \frac{\mu }{z} - (\mu + \lambda )\big )(t-y)} dy\\&\quad +(\nu - \lambda )\int _{0}^{t}\sum _{i=0}^{\infty } P_{i,N+1} (y) z^i e^{\big (\lambda z + \frac{\mu }{z} - (\mu + \lambda )\big )(t-y)} dy \\&+\lambda z \int _{0}^{t}\sum _{i=1}^{N} P_{0,i} (y) e^{\big (\lambda z + \frac{\mu }{z} - (\mu + \lambda )\big )(t-y)} dy + e^{-\big (\mu + \lambda - (\lambda z + \frac{\mu }{z})\big )t}. \end{aligned}$$

If \( a = 2\sqrt{\lambda \mu }\) and \( b = \sqrt{\frac{\lambda }{\mu }}\) then

$$\begin{aligned} e^{\big (\lambda z + \frac{\mu }{z}\big )(t-y)} = \sum _{n= - \infty }^{\infty } (bz)^n I_{n}(a(t-y)), \end{aligned}$$

where \(I_n(.)\) is the modified bessel function of first kind. Then,

$$\begin{aligned}&G(z,t) = -\bigg (\beta + \frac{\mu }{z} - \mu \bigg )\int _{0}^{t} P_{0,0} (y) e^{ - (\mu + \lambda )(t-y)} \\&\bigg [\sum _{n= - \infty }^{\infty } (bz)^n I_{n}(a(t-y))\bigg ] dy +(\nu - \lambda )\int _{0}^{t}\sum _{i=0}^{\infty } P_{i,N+1} (y) z^i\\&\bigg [e^{ - (\mu + \lambda )(t-y)} \sum _{n= - \infty }^{\infty } (bz)^n I_{n}(a(t-y))\bigg ] dy\\&\quad +\lambda z \int _{0}^{t} \sum _{i=1}^{N} P_{0,i} (y) e^{- (\mu + \lambda )(t-y)} \sum _{n= - \infty }^{\infty } (bz)^n I_{n}(a(t-y)) dy \\&\quad + e^{ - (\mu + \lambda )t} \sum _{n= - \infty }^{\infty } (bz)^n I_{n}(a(t)). \end{aligned}$$

Further comparing the coefficient of \(z^n\) for \(n = 1,2,\ldots \) from both sides in above equation, we find

$$\begin{aligned}&P_{n,0}(t)=-\int _{0}^{t} P_{0,0} (y) e^{ - (\mu + \lambda )(t-y)} b^n \nonumber \\&\quad [(\beta - \mu )I_{n}(.)+\mu b I_{n+1}(.)] dy\nonumber \\&\quad +(\nu - \lambda )\int _{0}^{t}\sum _{i=0}^{n} P_{i,N+1} (y) e^{ - (\mu + \lambda )(t-y)} b^{n-i} I_{n-i}(.) dy \nonumber \\&\quad +(\nu - \lambda )\int _{0}^{t}\sum _{i=1}^{\infty } P_{n+i,N+1} (y) e^{ - (\mu + \lambda )(t-y)} b^{-i} I_{-i}(.) dy \nonumber \\&\quad +\lambda \int _{0}^{t} \sum _{i=1}^{N} P_{0,i} (y) e^{- (\mu + \lambda )(t-y)} b^{n-1} I_{n-1}(.) dy \nonumber \\&\qquad + e^{ - (\mu + \lambda )t} b^n I_{n}(at), \end{aligned}$$
(19)

where\(I_n(.) = I_n(a(t-y))\).

And comparing the coefficient of \(z^{-n}\) for n = 1,2,3,.. on both sides, we have,

$$\begin{aligned}&0 = -\int _{0}^{t} P_{0,0} (y) e^{ - (\mu + \lambda )(t-y)} b^{-n} [(\beta - \mu )I_{-n}(.)\nonumber \\&\quad +\mu b I_{-n+1}(.)] dy +(\nu - \lambda )\int _{0}^{t}\sum _{i=0}^{\infty } P_{i,N+1} (y) e^{ - (\mu + \lambda )(t-y)}\nonumber \\&\quad \times b^{-n-i} I_{-n-i}(.) dy +\lambda \int _{0}^{t} \sum _{i=1}^{N} P_{0,i} (y) e^{- (\mu + \lambda )(t-y)}\nonumber \\&\quad \times b^{-n-1} I_{-n-1}(.) dy + e^{ - (\mu + \lambda )t} b^{-n} I_{-n}(at). \end{aligned}$$
(20)

Using the property of modified Bessel function that \(I_n(.) = I_{-n}(.) \) and Eqs. (19) and (20) [(19) - \(b^{2n} \times (20)]\), we have for \(n = 1, 2, \ldots \)

$$\begin{aligned} P_{n,0}(t)= & {} -\int _{0}^{t} P_{0,0} (y) e^{ - (\mu + \lambda )(t-y)} \mu b^{n+1}\nonumber \\&\times [I_{n+1}(.) - I_{n-1}(.)] dy +(\nu - \lambda )\nonumber \\&\qquad \qquad \qquad \int _{0}^{t}\sum _{i=0}^{n} P_{i,N+1} (y) e^{ - (\mu + \lambda )(t-y)}\nonumber \\&\times b^{n-i} [I_{n-i}(.)- I_{n+i}(.)] dy +(\nu - \lambda )\nonumber \\&\qquad \qquad \qquad \int _{0}^{t}\sum _{i=1}^{\infty } P_{n+i,N+1} (y)\nonumber \\&\times e^{ - (\mu + \lambda )(t-y)}b^{-i} [I_{i}(.) - I_{2n+i}(.)] dy +\lambda \nonumber \\&\qquad \qquad \qquad \int _{0}^{t} \sum _{i=1}^{N} P_{0,i} (y)\nonumber \\&\times e^{- (\mu + \lambda )(t-y)} b^{n-1}[ I_{n-1}(.)-I_{n+1}(.)] dy . \end{aligned}$$
(21)

After doing some simple manipulation on the above equation, we get

$$\begin{aligned} P_{n,0}(t) =&-\mu b^{n+1} P_{0,0} (t)\\&\times [I_{n+1}(at) - I_{n-1}(at)]e^{ - (\mu + \lambda )(t)}\\&+\sum _{i=0}^{n} (\nu - \lambda )b^{n-i} P_{i,N+1} (t) \times [I_{n-i}(at)\\&- I_{n+i}(at)] e^{ - (\mu + \lambda )(t)}\\&+\sum _{i=1}^{\infty } (\nu - \lambda )b^{-i} P_{n+i,N+1} (t) \times [I_{i}(at)\\&- I_{2n+i}(at)] e^{ - (\mu + \lambda )(t)}\\&+ \sum _{i=1}^{N} \lambda b^{n-1} P_{0,i} (t)\times [ I_{n-1}(at)\\&-I_{n+1}(at)] e^{- (\mu + \lambda )(t)} . \end{aligned}$$

Using \(I_{n-1}(\alpha x) - I_{n+1}(\alpha x) = \frac{2 n}{\alpha x} I_n (\alpha x)\) in (21) yields the required transient probabilities \( P_{n,0}(t)\), \(n \ge 1\).

Appendix 3

In Eq. (19), substituting n = 0, we have

$$\begin{aligned}&P_{0,0}(t) = -\int _{0}^{t} P_{0,0} (y) e^{ - (\mu + \lambda )(t-y)} [(\beta - \mu )I_{0}(.)+\mu b I_{1}(.)] dy \nonumber \\&+(\nu - \lambda )\int _{0}^{t}\sum _{i=0}^{\infty } P_{i,N+1} (y) e^{ - (\mu + \lambda )(t-y)} b^{-i} I_{i}(.) dy +\frac{\lambda }{b} \nonumber \\&\times \int _{0}^{t} \sum _{i=1}^{N} P_{0,i} (y) e^{- (\mu + \lambda )(t-y)} I_{1}(.) dy + e^{ - (\mu + \lambda )t} I_{0}(at). \end{aligned}$$
(22)

As

$$\begin{aligned} \sum _{n = 0}^{\infty } P_{n,0}(t) + \sum _{j = 1}^{N} P_{0,j}(t)+ \sum _{i = 0}^{\infty } P_{i,N+1}(t) = 1 . \end{aligned}$$

Taking Laplace transform of above equation, we get

$$\begin{aligned} \sum _{n = 0}^{\infty } f_{n,0}(s) + \sum _{j = 1}^{N} f_{0,j}(s)+ \sum _{i = 0}^{\infty } f_{i,N+1}(t) = \frac{1}{s}. \end{aligned}$$
(23)

Taking Laplace transform of transient probabilities obtained in Theorem 2 and using \(L[I_n(\alpha t)] = \frac{1}{\sqrt{s^2 - {\alpha }^2} }\bigg (\frac{s-\sqrt{s^2 - {\alpha }^2 }}{\alpha }\bigg )^n\) and \(L\bigg [\frac{2 n}{\alpha t} I_n(\alpha t)\bigg ] = \frac{2{\alpha }^{n-1}}{(s+\sqrt{s^2 - {\alpha }^2 })^n}\), we get

$$\begin{aligned}&f_{n,0}(s) = \mu b^{n+1}f_{0,0} (s) \frac{2{\alpha }^{n-1}}{(d+\sqrt{d^2 - {\alpha }^2 })^n}\nonumber \\&\quad +(\nu - \lambda )\sum _{i=0}^{n} b^{n-i} f_{i,N+1} (s) \frac{1}{\sqrt{d^2 - {\alpha }^2} }\nonumber \\&\quad \times \Bigg [\left( \frac{d-\sqrt{d^2 - {\alpha }^2 }}{\alpha }\right) ^{n-i}- \left( \frac{d-\sqrt{d^2 - {\alpha }^2 }}{\alpha }\right) ^{n+i}\Bigg ]\nonumber \\&\quad +(\nu - \lambda )\sum _{i=1}^{\infty } b^{-i}f_{n+i,N+1} (s) \frac{1}{\sqrt{d^2 - {\alpha }^2} }\nonumber \\&\quad \times \Bigg [\left( \frac{d-\sqrt{d^2 - {\alpha }^2 }}{\alpha }\right) ^{i}- \left( \frac{d-\sqrt{d^2 - {\alpha }^2 }}{\alpha }\right) ^{2n+i}\Bigg ]\nonumber \\&\quad +\lambda b^{n-1} \sum _{i=1}^{N} f_{0,i} (s)\frac{2{\alpha }^{n-1}}{(d+\sqrt{d^2 - {\alpha }^2 })^n} \end{aligned}$$
(24)

where \(d= s+\lambda +\mu \) .

Using (16), (18) and (24) in equation (23), we obtain the required Laplace transform of transient probability of idle state (0,0). Inverse Laplace transform of the above equation yields the idle state probability \(P_{0,0}(t)\).

Appendix 4

From Eq. (11), we get

$$\begin{aligned} \pi _{0,1} = \frac{\beta }{\alpha } \pi _{0,0}. \end{aligned}$$
(25)

From Eq. (12), we get

$$\begin{aligned} \alpha \pi _{0,j} = (\alpha - \lambda )\pi _{0,j-1}., j = 2,3,\ldots ,N \end{aligned}$$

which recursively yields,

$$\begin{aligned} \pi _{0,j} =\frac{ (\alpha - \lambda )^{j-1}}{\alpha ^{j-1}}\pi _{0,1}, j = 2,3,\ldots ,N . \end{aligned}$$

Using the value of \(\pi _{0,1}\) obtained in equation (25), we get

$$\begin{aligned} \pi _{0,j} =\frac{\beta (\alpha - \lambda )^{j-1}}{\alpha ^{j}}\pi _{0,0}, j = 1,2,\ldots ,N . \end{aligned}$$
(26)

From Eq. (13), we have

$$\begin{aligned} \pi _{0,N+1} = \frac{(\alpha - \lambda )}{\nu }\pi _{0,N} \end{aligned}$$

and using Eq. (26) we obtain, for \(j = N\)

$$\begin{aligned} \pi _{0,N+1} = \frac{\beta (\alpha - \lambda )^{N}}{\nu \alpha ^{N}}\pi _{0,0}. \end{aligned}$$
(27)

From Eq. (14), we get

$$\begin{aligned} \pi _{i,N+1} = \frac{\lambda }{\nu } \pi _{i-1,N+1}, i = 1, 2, \ldots \end{aligned}$$

which recursively yields

$$\begin{aligned} \pi _{i,N+1} = \frac{\lambda ^i}{\nu ^i } \pi _{0,N+1}, i = 1, 2,\ldots \end{aligned}$$

and using value of \(\pi _{0,N+1}\) obtained in equation (27), we have

$$\begin{aligned} \pi _{i,N+1} = \frac{\beta \lambda ^i (\alpha - \lambda )^{N}}{\nu ^{i+1}\alpha ^{N} } \pi _{0,0}, i = 0, 1,\ldots . \end{aligned}$$
(28)

Taking Laplace transform of (21) for \(n = 1,2,\ldots \) we have

$$\begin{aligned}&f_{n,0}(s) = f_{0,0} (s) \mu b^{n+1} \Bigg [ \frac{1}{\sqrt{d^2-a^2}}\left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n+1}\\&-\frac{1}{\sqrt{d^2-a^2}}\left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n-1} \Bigg ]\\&+(\nu - \lambda )\sum _{i=0}^{n} f_{i,N+1} (s) b^{n-i} \Bigg [\frac{1}{\sqrt{d^2-a^2}}\left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n-i}\\&- \frac{1}{\sqrt{d^2-a^2}}\left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n+i} \Bigg ]\\&+(\nu - \lambda )\sum _{i=1}^{\infty } f_{n+i,N+1} (s) b^{-i} \Bigg [\frac{1}{\sqrt{d^2-a^2}}\left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{i}\\&- \frac{1}{\sqrt{d^2-a^2}}\left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{2n+i}\Bigg ]\\&+\lambda \sum _{i=1}^{N} f_{0,i} (s) b^{n-1}\Bigg [ \frac{1}{\sqrt{d^2-a^2}}\left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n-1}\\&- \frac{1}{\sqrt{d^2-a^2}}\left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n+1}\Bigg ] \end{aligned}$$

where \(d = s +\lambda +\mu \) , \(a = 2\sqrt{\lambda \mu }\) and \(b = \sqrt{\frac{\lambda }{\mu }}\).

Using Eqs. (16) and (18) in above equation, we get

$$\begin{aligned}&f_{n,0}(s) = \frac{\mu b^{n+1}}{\sqrt{d^2-a^2}}\Bigg [ \left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n+1}\\&- \left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n-1}\Bigg ] f_{0,0} (s)\\&+(\nu - \lambda )\sum _{i=0}^{n} \frac{ b^{n-i}}{\sqrt{d^2-a^2}} \frac{\beta \lambda ^i (\alpha - \lambda )^{N}}{(s+\nu )^{i+1}(s+ \alpha )^{N}}\\&\times \left[ \left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n-i}- \left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n+i}\right] f_{0,0} (s)\\&+(\nu - \lambda )\sum _{i=1}^{\infty } \frac{ b^{-i}}{\sqrt{d^2-a^2}}\frac{\beta \lambda ^{n+i} (\alpha - \lambda )^{N}}{(s+\nu )^{n+i+1}(s+ \alpha )^{N}}\\&\times \left[ \left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{i} - \left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{2n+i}\right] f_{0,0} (s) \\&+\lambda \sum _{i=1}^{N} \frac{b^{n-1}}{\sqrt{d^2-a^2}} \frac{\beta (\alpha - \lambda )^{i-1}}{(s+ \alpha )^{i}}\Bigg [ \left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n-1}\\&- \left( \frac{d - \sqrt{d^2-a^2} }{a}\right) ^{n+1}\Bigg ] f_{0,0} (s) . \end{aligned}$$

The steady-state probability \(\pi _{n,0}\) for \(n= 1,2,\ldots \) can be found using the well known properties of the Laplace transform. It is well known that for steady-state

$$\begin{aligned} \frac{\lambda }{\mu }<1 \end{aligned}$$

and

$$\begin{aligned} \lim _{t \rightarrow \infty } P_{n,0}(t) = \pi _{n,0} = \lim _{s \rightarrow 0} s f_{n,0} (s), \end{aligned}$$

where \(n= 1,2,\ldots \) . Hence,

$$\begin{aligned}&\pi _{n,0} =\Bigg \{\frac{\mu b^{n+1}}{(\mu - \lambda )}\left[ b^{n+1}- b^{n-1}\right] +\sum _{i=0}^{n} \frac{(\nu - \lambda ) b^{n-i} }{(\mu - \lambda )}\nonumber \\&\times \frac{\beta \lambda ^i (\alpha - \lambda )^{N}}{\nu ^{i+1} \alpha ^{N}} \left[ b^{n-i}- b^{n+i}\right] +(\nu - \lambda )\sum _{i=1}^{\infty } \frac{ b^{-i}}{(\mu - \lambda )} \nonumber \\&\times \frac{\beta \lambda ^{n+i} (\alpha - \lambda )^{N}}{\nu ^{n+i+1}\alpha ^{N}} \left[ b^{i} - b^{2n+i}\right] +\lambda \sum _{i=1}^{N} \frac{b^{n-1}}{(\mu - \lambda )} \nonumber \\&\times \frac{\beta (\alpha - \lambda )^{i-1}}{\alpha ^{i}}\left[ b^{n-1}- b^{n+1} \right] \Bigg \} \pi _{0,0}.\nonumber \\&\pi _{n,0} =\Bigg \{ \left[ \frac{\mu b^{n+1}}{(\mu - \lambda )} + \frac{ \beta b^{n-1} ((\alpha - \lambda )^N -\alpha ^N)}{ \alpha ^N (\mu - \lambda )} \right] \nonumber \\&\times \left[ b^{n+1}- b^{n-1} \right] + \frac{\beta b^{n} (\alpha - \lambda )^{N}}{(\mu - \lambda ) \alpha ^{N}} \nonumber \\&\times \Bigg [ \frac{(\nu - \lambda ) b^{n+2}(1-(\frac{\lambda }{\nu b^2})^{n+1})}{(\nu b^2 -\lambda )}- b^n \left( 1-\left( \frac{\lambda }{\nu }\right) ^{n+1}\right) \nonumber \\&+\left( \frac{\lambda }{\nu }\right) ^{n+1} (b^{-n} - b^n)\Bigg ] \Bigg \}\pi _{0,0}.\nonumber \\&\pi _{n,0} = A_n \pi _{0,0}, \end{aligned}$$
(29)

where

$$\begin{aligned}&A_n = \left[ \frac{\mu b^{n+1}}{(\mu - \lambda )} + \frac{ \beta b^{n-1} ((\alpha - \lambda )^N -\alpha ^N)}{ \alpha ^N (\mu - \lambda )} \right] \left[ b^{n+1}- b^{n-1} \right] \\&+ \frac{\beta b^{n} (\alpha - \lambda )^{N}}{(\mu - \lambda ) \alpha ^{N}} \Bigg [ \frac{(\nu - \lambda ) b^{n+2}(1-(\frac{\lambda }{\nu b^2})^{n+1})}{(\nu b^2 -\lambda )}\\&- b^n \left( 1-\left( \frac{\lambda }{\nu }\right) ^{n+1}\right) +\left( \frac{\lambda }{\nu }\right) ^{n+1} (b^{-n} - b^n)\Bigg ]. \end{aligned}$$

And as

$$\begin{aligned} \sum _{i = 0}^{\infty } \pi _{i,0} + \sum _{j = 1}^{N} \pi _{0,j}+ \sum _{i = 0}^{\infty } \pi _{i,N+1} = 1. \end{aligned}$$

Substituting (26), (28) and (29) in above equation, we get

$$\begin{aligned}&\pi _{0,0}+\sum _{i = 1}^{\infty }A_i \pi _{0,0} + \sum _{j = 1}^{N}\frac{\beta (\alpha - \lambda )^{j-1}}{\alpha ^{j}}\pi _{0,0}\\&+ \sum _{i = 0}^{\infty } \frac{\beta \lambda ^i (\alpha - \lambda )^{N}}{\nu ^{i+1}\alpha ^{N} } \pi _{0,0} = 1 . \end{aligned}$$

Hence,

$$\begin{aligned} \pi _{0,0} = \frac{1}{1+\sum _{i = 1}^{\infty }A_i + \sum _{j = 1}^{N}\frac{\beta (\alpha - \lambda )^{j-1}}{\alpha ^{j}}+ \sum _{i = 0}^{\infty } \frac{\beta \lambda ^i (\alpha - \lambda )^{N}}{\nu ^{i+1}\alpha ^{N} } }. \end{aligned}$$

Here, \(\pi _{0,0}\) exist as \(\lambda \le \alpha \), \(\lambda < \mu \) and \(\lambda < \nu \).

Appendix 5

The two stage method is used to solve the SMP model which is described by its kernel matrix [5]. Let \(K_{m,n}(t)\) denotes the elements of kernel matrix K(t), where \(K_{m,n}(t)\) is the probability that the system has just entered the state m and in the next transition is going the enter the state n within time t. In this Section, we present the steady-state analysis for the semi-Markov model. The non-zero elements for kernel matrix are given as:

$$\begin{aligned}&K_{I_{0},S_1}(t) = \int _{0}^{t} (1-F_{I_{0}, W_1}(x)) dF_{I_{0}, S_1}(x)\\&K_{I_{0},S_1}(t) = {\left\{ \begin{array}{ll} 0 &{} \,\hbox {if}\, t< \frac{1}{\beta } \\ e^{-\frac{\lambda }{\beta }} &{} \,\hbox {if}\, t \ge \frac{1}{\beta } \end{array}\right. }\\&K_{I_{0},W_1}(t) = \int _{0}^{t} (1-F_{I_{0}, S_1}(x)) dF_{I_{0}, W_1}(x)\\&K_{I_{0},W_1}(t) = {\left\{ \begin{array}{ll} 1 - e^{-\lambda t} &{} \,\hbox {if}\, t< \frac{1}{\beta }\\ 1 - e^{-\frac{\lambda }{\beta }} &{} \,\hbox {if}\, t \ge \frac{1}{\beta } \end{array}\right. }\\&K_{S_j,S_{j+1}}(t) = \int _{0}^{t} (1-F_{S_j, W_1}(x)) dF_{S_j, S_{j+1}}(x)\\&K_{S_j,S_{j+1}}(t) = {\left\{ \begin{array}{ll} 0 &{} \,\hbox {if}\,t< \frac{1}{\alpha }\\ e^{-\frac{\lambda }{\alpha }} &{} \,\hbox {if}\, t \ge \frac{1}{\alpha } \end{array}\right. } , j= 1,2,\ldots ,N-1\\&K_{S_N,L_0}(t) = \int _{0}^{t} (1-F_{S_N, W_1}(x)) dF_{S_N, L_0}(x)\\&K_{S_N,L_0}(t) = {\left\{ \begin{array}{ll} 0 &{} \,\hbox {if}\, t< \frac{1}{\nu }\\ e^{-\frac{\lambda }{\alpha }} &{} \,\hbox {if}\, t \ge \frac{1}{\alpha } \end{array}\right. }\\&K_{W_k,W_{k+1}}(t) = \int _{0}^{t} (1-F_{W_k, W_{k-1}}(x)) dF_{W_k, W_{k+1}}(x)\\&K_{W_k,W_{k+1}}(t) = \frac{\lambda }{\lambda +\mu }(1-e^{-(\lambda +\mu )t}), k = 1,2,\ldots \\&K_{W_1,I_{0}}(t) = \int _{0}^{t} (1-F_{W_1, W_{2}}(x)) dF_{W_1, I_{0}}(x)\\&K_{W_1,I_{0}}(t) = \frac{\mu }{\lambda +\mu }(1-e^{-(\lambda +\mu )t})\\&K_{W_k,W_{k-1}}(t) = \int _{0}^{t} (1-F_{W_k, W_{k+1}}(x)) dF_{W_k, W_{k-1}}(x)\\&K_{W_k,W_{k-1}}(t) = \frac{\mu }{\lambda +\mu }(1-e^{-(\lambda +\mu )t}), k = 2,3,\ldots \\&K_{S_j,W_1}(t) = \int _{0}^{t}(1-F_{S_j, S_{j+1}}(x)) dF_{S_j, W_1}(x)\\&K_{S_j,W_1}(t) = {\left\{ \begin{array}{ll} 1 - e^{-\lambda t} &{} \,\hbox {if}\, t< \frac{1}{\alpha }\\ 1 - e^{-\frac{\lambda }{\alpha }} &{} \,\hbox {if}\, t \ge \frac{1}{\alpha } \end{array}\right. }, j = 1,2,\ldots ,N\\&K_{L_i,L_{i+1}}(t) = \int _{0}^{t} (1-F_{L_i, W_{k}}(x)) dF_{L_i, L_{i+1}}(x)\\&K_{L_i,L_{i+1}}(t) = {\left\{ \begin{array}{ll} 1 - e^{-\lambda t} &{} \,\hbox {if}\, t< \frac{1}{\nu }\\ 1 - e^{-\frac{\lambda }{\nu }} &{} \,\hbox {if}\, t \ge \frac{1}{\nu } \end{array}\right. }, i = 0,1,\ldots \\&K_{L_0,I_{0}}(t) = \int _{0}^{t} (1-F_{L_0, L_{1}}(x)) dF_{L_0, I_{0}}(x)\\&K_{L_0,I_{0}}(t) = {\left\{ \begin{array}{ll} 0 &{} \,\hbox {if}\, t< \frac{1}{\nu }\\ e^{-\frac{\lambda }{\nu }} &{} \,\hbox {if}\, t \ge \frac{1}{\nu } \end{array}\right. }\\&K_{L_i,W_{i}}(t) = \int _{0}^{t} (1-F_{L_i, L_{i+1}}(x)) dF_{L_i, W_i}(x)\\&K_{L_i,W_{i}}(t) = {\left\{ \begin{array}{ll} 0 &{} \,\hbox {if}\, t < \frac{1}{\nu }\\ e^{-\frac{\lambda }{\nu }} &{} \,\hbox {if}\, t \ge \frac{1}{\nu } \end{array}\right. }, i = 1,2,\ldots \end{aligned}$$

By the two stage analysis of semi-Markov model,

\(K_{m,n}(\infty ) = \lim _{t \rightarrow \infty } K_{m,n}(t) \), where \(m,n \in {\varOmega }\), where matrix \(K(\infty )\) with entries \(K_{m,n}(\infty )\) gives the one step transition probabilities for the EMC(Embedded Markov Chain) of the SMP model and row sum of matrix \(K(\infty )\) is 1. Hence, the one step transition probabilities for the model are given as:

\( K_{I_{0},S_1}(\infty ) = e^{-\frac{\lambda }{\beta }} \)

\( K_{I_{0},W_1}(\infty ) = 1-e^{-\frac{\lambda }{\beta }} \)

\( K_{S_j,S_{j+1}}(\infty ) = e^{-\frac{\lambda }{\alpha }}, j = 1,2,\ldots ,N-1\)

\( K_{S_N,L_0}(\infty ) = e^{-\frac{\lambda }{\alpha }}\)

\( K_{W_k,W_{k+1}}(\infty ) = \frac{\lambda }{\lambda +\mu }, k = 1,2,\ldots \)

\( K_{W_1,I_{0}}(\infty ) = \frac{\mu }{\lambda +\mu }\)

\( K_{W_k,W_{k-1}}(\infty ) = \frac{\mu }{\lambda +\mu }, k = 2,3,\ldots \)

\( K_{S_j,W_1}(\infty ) = 1-e^{-\frac{\lambda }{\alpha }}, j = 1,2,\ldots ,N\)

\(K_{L_i,L_{i+1}}(\infty ) = 1-e^{-\frac{\lambda }{\nu }}, i = 0,1,\ldots \)

\(K_{L_0,I_{0}}(t) = e^{-\frac{\lambda }{\nu }}\)

\( K_{L_i,W_{i}}(\infty ) = e^{-\frac{\lambda }{\nu }}, i = 1,2,\ldots \)

The steady-state probabilities for states of EMC, given by vector \(\mathbf{H }\) and is defined as

\((H_{I},H_{W_1},\ldots ,H_{S_1},\ldots ,H_{S_N},H_{L_0},H_{L_1},\ldots )\) can be obtained by solving [35]:

$$\begin{aligned} H = HK(\infty ), \sum _{m \in {\varOmega }} H_m = 1 . \end{aligned}$$

Hence, using \(H = HK(\infty )\) and the entries of matrix \(K(\infty )\), we get the system of linear equations, i.e.,

\(H_{I_{0}} = \frac{\mu }{\lambda +\mu }H_{W_1}+ e^{-\frac{\lambda }{\nu }}H_{L_0}\)

\(H_{W_1} = \big (1-e^{-\frac{\lambda }{\beta }}\big )H_{I_0}+ \frac{\mu }{\lambda +\mu }H_{W_2}+ e^{-\frac{\lambda }{\nu }}H_{L_1}+\big (1-e^{-\frac{\lambda }{\alpha }}\big )(H_{S_1}+H_{S_2}+\ldots +H_{S_N})\)

\(H_{W_k} = \frac{\lambda }{\lambda +\mu }H_{W_{k-1}}+ \frac{\mu }{\lambda +\mu }H_{W_{k+1}}+ e^{-\frac{\lambda }{\nu }}H_{L_i}, k = 2,\ldots \)

\(H_{S_1} = e^{-\frac{\lambda }{\beta }}H_{I_0}\)

\(H_{S_{j+1}} = e^{-\frac{\lambda }{\alpha }}H_{S_j}, j = 1,2,\ldots ,N-1\)

\(H_{L_0} = e^{-\frac{\lambda }{\alpha }}H_{S_N}\)

\(H_{L_{i+1}} =\big (1-e^{-\frac{\lambda }{\nu }}\big )H_{L_{i}} , i= 0,1,\ldots \) .

Solving this system of equations, we get the steady-state probabilities of each state, \(H_m, m \in {\varOmega }\) in terms of \(H_{I_0}\), i.e.,

\(H_{S_j} = e^{-\frac{\lambda }{\beta }}\big (e^{-\frac{\lambda }{\alpha }}\big )^{j-1} H_{I_{0}}\), \(j = 1,2,\ldots ,N\)

\(H_{L_i} = e^{-\big (\frac{\lambda }{\beta }+\frac{\lambda N}{\alpha }\big )}\big (1- e^{-\frac{\lambda }{\nu }}\big )^i H_{I_{0}}\), \(i = 0,1,\ldots \)

\(H_{W_1} = \big (\frac{\lambda +\mu }{\mu }\big )\big (1-e^{-\big (\frac{\lambda }{\beta }+\frac{\lambda N}{\alpha }+\frac{\lambda }{\nu }\big )}\big ) H_{I_{0}}\)

\(H_{W_k} = \big (\frac{\lambda +\mu }{\mu }\big )\bigg [\big (\frac{\lambda }{\mu }\big )^{k-1}\big (1-e^{-\big (\frac{\lambda }{\beta }+\frac{\lambda N}{\alpha }+\frac{\lambda }{\nu }\big )}\big )+\)

\(\sum _{j=2}^{k} e^{-\big (\frac{\lambda }{\beta }+\frac{\lambda N}{\alpha }\big )}\bigg [\big (\frac{\lambda }{\mu }\big )^{k-j}(1-e^{-\frac{\lambda }{\nu }})^j\bigg ] \bigg ]H_{I_{0}}, k = 2,\ldots \)

Using equation \(\sum _{m \in {\varOmega }} H_m = 1\) and the probabilities, \(H_m, m \in {\varOmega }\) in terms of \(H_{I_{0}}\), we obtain

$$\begin{aligned} H_{I_{0}} = \frac{1}{D}, \end{aligned}$$

where,

$$\begin{aligned}&D = \frac{2\mu }{\mu -\lambda } - \frac{\lambda +\mu }{\mu -\lambda } e^{-\big (\frac{\lambda }{\beta }+\frac{\lambda N}{\alpha }+\frac{\lambda }{\nu }\big )}\\&\quad + \frac{e^{-\frac{\lambda }{\beta }}-e^{-\big (\frac{\lambda N}{\alpha }+\frac{\lambda }{\beta }\big )}}{1- e^{-\frac{\lambda }{\alpha }} } + \frac{e^{-\big (\frac{\lambda N}{\alpha }+\frac{\lambda }{\beta }\big )}}{e^{-\frac{\lambda }{\nu }}}\\&\quad - \frac{\lambda (\lambda +\mu )}{\mu }\frac{e^{-\big (\frac{\lambda N}{\alpha }+\frac{\lambda }{\beta }\big )}(1- e^{-\frac{\lambda }{\nu }})^2}{\big (\frac{\lambda }{\mu }-1+e^{-\frac{\lambda }{\nu }}\big )}\bigg [\frac{e^{\frac{\lambda }{\nu }}}{\mu }-\frac{1}{\mu -\lambda }\bigg ]. \end{aligned}$$

Let \(T_m\) denotes the sojourn time in state \(m \in {\varOmega }\). Since, the EMC obtained for this model is irreducible, aperiodic and positive recurrent, i.e, ergodic, hence the steady-state probabilities of each state \(m \in {\varOmega }\) of semi-Markov model [35] can be obtained as:

$$\begin{aligned} \pi _m = \frac{H_m E[T_m]}{\sum _{n \in {\varOmega }}H_n E[T_n] }, m \in {\varOmega }, \end{aligned}$$

where \(E[T_m]\) denotes the expected sojourn time in state \(m \in {\varOmega }\). Then the expected sojourn time spent in each state can be obtained as:

$$\begin{aligned}&E[T_{I_{0}}] = \int _{0}^{\infty } (1-F_{I_{0}, S_1}(t)) (1-F_{I_{0}, W_1}(t)) dt\\&E[T_{I_{0}}] = \frac{1 - e^{\frac{-\lambda }{\beta }}}{\lambda }\\&E[T_{W_k}] = \int _{0}^{\infty } (1-F_{W_k, W_{k-1}}(t)) (1-F_{W_k, W_{k+1}}(t)) dt\\&E[T_{W_k}] = \frac{1}{\lambda +\mu } , k = 1,2,\ldots \\&E[T_{S_j} ]= \int _{0}^{\infty } (1-F_{S_j, W_1}(t)) (1-F_{S_j, S_{j+1}}(t)) dt\\&E[T_{S_j}] = \frac{1 - e^{\frac{-\lambda }{\alpha }}}{\lambda }, j = 1,2,\ldots ,N-1\\&E[T_{S_N} ]= \int _{0}^{\infty } (1-F_{S_N, W_1}(t)) (1-F_{S_N, L_{0}}(t)) dt\\&E[T_{S_N}] = \frac{1 - e^{\frac{-\lambda }{\alpha }}}{\lambda }\\&E[T_{L_i}] = \int _{0}^{\infty } (1-F_{L_i, L_{i+1}}(t)) (1-F_{L_i, W_k}(t)) dt\\&E[T_{L_i}] = \frac{1 - e^{\frac{-\lambda }{\nu }}}{\lambda }, i = 0,1,\ldots . \end{aligned}$$

The stability conditions for the existence of steady-state probabilities of the semi-Markov model are given as \(\lambda < \mu \), \(\lambda \le \alpha \) and \(\lambda < \nu \). Hence, under stability conditions using expected sojourn times and the steady-state probabilities of EMC, we get

$$\begin{aligned} \sum _{n \in {\varOmega }}H_n E[T_n] = M H_{I_0}, \end{aligned}$$

where

$$\begin{aligned}&M = \frac{\mu }{\lambda (\mu -\lambda )} - \frac{e^{-\big (\frac{\lambda }{\beta }+\frac{\lambda N}{\alpha }+\frac{\lambda }{\nu }\big )}}{\mu -\lambda } - \frac{e^{-\big (\frac{\lambda N}{\alpha }+\frac{\lambda }{\beta }\big )}}{\lambda }\big [2-e^{\frac{\lambda }{\nu }} \big ]\\&\quad - \frac{\lambda }{\mu }\frac{e^{-\big (\frac{\lambda N}{\alpha }+\frac{\lambda }{\beta }\big )}\big (1- e^{-\frac{\lambda }{\nu }}\big )^2}{\big (\frac{\lambda }{\mu }-1+e^{-\frac{\lambda }{\nu }}\big )}\bigg [\frac{e^{\frac{\lambda }{\nu }}}{\mu }-\frac{1}{\mu -\lambda }\bigg ]. \end{aligned}$$

Hence, the steady-state probabilities for the semi-Markov model are given as:

$$\begin{aligned}&\pi _{I_{0}} = \frac{1 - e^{-\frac{\lambda }{\beta }}}{\lambda M },\\&\pi _{W_1} = \frac{1-e^{-\big (\frac{\lambda }{\beta }+\frac{\lambda N}{\alpha }+\frac{\lambda }{\nu }\big )}}{\mu M },\\&\pi _{W_k} = \frac{1}{\mu M }\bigg [\big (\frac{\lambda }{\mu }\big )^{k-1}\big (1-e^{-\big (\frac{\lambda }{\beta }+\frac{\lambda N}{\alpha }+\frac{\lambda }{\nu }\big )}\big ) \\&\qquad +\frac{\big (\frac{\lambda }{\mu }\big )\big (1-e^{-\frac{\lambda }{\nu }}\big )^2}{\bigg (\frac{\lambda }{\mu }-1+e^{-\frac{\lambda }{\nu }}\bigg )} e^{-\big (\frac{\lambda }{\beta }+\frac{\lambda N}{\alpha }\big )}\\&\qquad \left[ \left( \frac{\lambda }{\mu }\right) ^{k-2}-\left( 1-e^{-\frac{\lambda }{\nu }}\right) ^{k-2}\right] \bigg ], ~k = 2,3,\ldots \\&\pi _{S_j} = \frac{e^{-\frac{\lambda }{\beta }}\big (e^{-\frac{\lambda }{\alpha }}\big )^{j-1}\big (1-e^{-\frac{\lambda }{\alpha }}\big )}{\lambda M}, ~j= 1,2,\ldots ,N \\&\pi _{L_i} = \frac{e^{-\big (\frac{\lambda }{\beta }+\frac{\lambda N}{\alpha }\big )}\big (1- e^{-\frac{\lambda }{\nu }}\big )^{i+1}}{\lambda M }, ~i= 0, 1,\ldots \end{aligned}$$

The steady-state probabilities \(\pi _m \forall \) \( m \in S\) exist as \(\lambda < \mu \), \(\lambda \le \alpha \) and \(\lambda < \nu \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmaraja, S., Aggarwal, A. & Sudhesh, R. Analysis of energy saving in user equipment in LTE-A using stochastic modelling. Telecommun Syst 80, 123–140 (2022). https://doi.org/10.1007/s11235-022-00890-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00890-6

Keywords

Navigation