Skip to main content
Log in

Buffer-aided cooperative NOMA with partial relay selection

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The Cooperative Non-orthogonal multiple access (C-NOMA) technique has been considered as a promising solution to improve the coverage extension and transmission reliability. But due to the unavailability of perfect channel state information in dual hope network, transmission link becomes unreliable, and difficulty in decoding also arises in the successive interference cancellation (SIC) process at destination users. To solve this problem, this contribution develops and investigates a joint buffer-aided multi-relay cooperative NOMA scheme (BAN-PRS) with partial relay selection. More specifically, we examine a model, where the source transmits the message to two NOMA users via the best relay node selected from a set of half-duplex (HD) amplify and forward relays. In this model, information from source to destination is transmitted using the power domain NOMA technique. In between the transmission, a cooperative buffer-based relay network is used, where partial relay selection (PRS) is performed, and based on first-hop channel state information, we choose the best buffer-based relay node. To evaluate the system performance, exact and asymptotic analytical expressions of outage probabilities, maximum packet delay, and throughput are derived in integral form for both the destination users. Additionally, relying on these analytical expressions, we accessed the impact of buffer size, the number of relay nodes, and power allocation coefficients between the destinations on the performance of this cooperative NOMA network. Furthermore, we carry out Monte-Carlo simulations to validate the correctness of this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple access for 5G. IEEE Communications Surveys & Tutorials, 20, 2294–2323.

    Article  Google Scholar 

  2. Ding, Z., Adachi, F., & Poor, H. V. (2015). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.

    Article  Google Scholar 

  3. Gui, G., Huang, H., Song, Y., & Sari, H. (2018). Deep learning for an effective nonorthogonal multiple access scheme. IEEE Transactions on Vehicular Technology, 67(9), 8440–8450.

    Article  Google Scholar 

  4. Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.

    Article  Google Scholar 

  5. Le, M. T., Sanguinetti, L., Björnson, E., & Di Benedetto, M. G. (2019). What is the benefit of code-domain NOMA in massive MIMO?. In 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 1-5). IEEE

  6. Islam, S. R., Avazov, N., Dobre, O. A., & Kwak, K. S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys & Tutorials, 19(2), 721–742.

    Article  Google Scholar 

  7. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and beyond. Proceedings of the IEEE, 105(12), 2347–2381.

    Article  Google Scholar 

  8. Yang, Z., Ding, Z., Wu, Y., & Fan, P. (2017). Novel relay selection strategies for cooperative NOMA. IEEE Transactions on Vehicular Technology, 66(11), 10114–10123.

    Article  Google Scholar 

  9. Abbasi, O., Ebrahimi, A., & Mokari, N. (2018). NOMA inspired cooperative relaying system using an AF relay. IEEE Wireless Communications Letters, 8(1), 261–264.

    Article  Google Scholar 

  10. Xu, P., Yang, Z., Ding, Z., & Zhang, Z. (2018). Optimal relay selection schemes for cooperative NOMA. IEEE Transactions on Vehicular Technology, 67(8), 7851–7855.

    Article  Google Scholar 

  11. Nomikos, N., Charalambous, T., Krikidis, I., Skoutas, D. N., Vouyioukas, D., Johansson, M., & Skianis, C. (2015). A survey on buffer-aided relay selection. IEEE Communications Surveys & Tutorials, 18(2), 1073–1097.

    Article  Google Scholar 

  12. Ju, J., Duan, W., Sun, Q., Gao, S., & Zhang, G. (2019). Performance analysis for cooperative NOMA with opportunistic relay selection. IEEE Access, 7, 131488–131500.

    Article  Google Scholar 

  13. Zhang, H., Li, Y., Jin, D., Hassan, M. M., Alelaiwi, A., & Chen, S. (2015). Buffer-aided device-to-device communication: Opportunities and challenges. IEEE Communications Magazine, 53(12), 67–74.

    Article  Google Scholar 

  14. Ji, B., Li, Y., Zhou, B., Li, C., Song, K., & Wen, H. (2019). Performance analysis of UAV relay assisted IoT communication network enhanced with energy harvesting. IEEE Access, 7, 38738–38747.

    Article  Google Scholar 

  15. Wei, C., Yin, Z., Yang, W., & Cai, Y. (2019). Enhancing physical layer security of DF buffer-aided relay networks with small buffer sizes. IEEE Access, 7, 128684–128693.

    Article  Google Scholar 

  16. Kumar, B., & Prakriya, S. (2017). Performance of adaptive link selection with buffer-aided relays in underlay cognitive networks. IEEE Transactions on Vehicular Technology, 67(2), 1492–1509.

    Article  Google Scholar 

  17. Shabbir, G., Ahmad, J., Raza, W., Amin, Y., Akram, A., Loo, J., & Tenhunen, H. (2019). Buffer-aided successive relay selection scheme for energy harvesting IoT networks. IEEE Access, 7, 36246–36258.

    Article  Google Scholar 

  18. Nomikos, N., Charalambous, T., Vouyioukas, D., Karagiannidis, G. K., & Wichman, R. (2019). Hybrid NOMA/OMA with buffer-aided relay selection in cooperative networks. IEEE Journal of Selected Topics in Signal Processing, 13(3), 524–537.

    Article  Google Scholar 

  19. Zhang, Q., Liang, Z., Li, Q., & Qin, J. (2016). Buffer-aided non-orthogonal multiple access relaying systems in rayleigh fading channels. IEEE Transactions on Communications, 65(1), 95–106.

    Article  Google Scholar 

  20. Li, G. X., Dong, C., Liu, D., Li, G., & Zhang, Y. (2014). Outage analysis of dual-hop transmission with buffer aided amplify-and-forward relay. In 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall) (pp. 1-5). IEEE

  21. Nomikos, N., Michailidis, E. T., Trakadas, P., Vouyioukas, D., Zahariadis, T., & Krikidis, I. (2019). Flex-NOMA: Exploiting buffer-aided relay selection for massive connectivity in the 5G uplink. IEEE Access, 7, 88743–88755.

    Article  Google Scholar 

  22. Alkhawatrah, M., Gong, Y., Chen, G., Lambotharan, S., & Chambers, J. A. (2019). Buffer-aided relay selection for cooperative NOMA in the internet of things. IEEE Internet of Things Journal, 6(3), 5722–5731.

    Article  Google Scholar 

  23. Cao, H., Cai, J., Huang, S., & Lu, Y. (2019). Online adaptive transmission strategy for buffer-aided cooperative NOMA systems. IEEE Trans. Mobile Comput., 18(5), 1133–1144.

    Article  Google Scholar 

  24. Xu, P., Quan, J., Yang, Z., Chen, G., & Ding, Z. (2019). Performance analysis of buffer-aided hybrid noma/oma in cooperative uplink system. IEEE Access, 7, 168759–168773.

    Article  Google Scholar 

  25. Li, J., Lei, X., Diamantoulakis, P. D., Zhou, F., Sarigiannidis, P., & Karagiannidis, G. K. (2020). Resource allocation in buffer-aided cooperative non-orthogonal multiple access systems. IEEE Transactions on Communications, 68(12), 7429–7445.

    Article  Google Scholar 

  26. Kochi, J., Nakai, R., & Sugiura, S. (2019). Performance evaluation of generalized buffer-state-based relay selection in NOMA-aided downlink. IEEE Access, 7, 173320–173328.

    Article  Google Scholar 

  27. Kim, J. B., & Lee, I. H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.

    Article  Google Scholar 

  28. Zhong, C., & Zhang, Z. (2016). Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Communications Letters, 20(12), 2478–2481.

    Article  Google Scholar 

  29. Li, J., Lei, X., Diamantoulakis, P. D., Sarigiannidis, P., & Karagiannidis, G. K. (2019). Buffer-aided relaying for downlink NOMA systems with direct links. In ICC 2019-2019 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE

  30. Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters, 5(4), 416–419.

    Article  Google Scholar 

  31. Krikidis, I., Thompson, J., Mclaughlin, S., et al. (2008). Amplify-and-forward with partial relay selection. IEEE Communications Letters, 12(4), 235–237.

    Article  Google Scholar 

  32. Deng, D., Fan, L., Lei, X., Tan, W., & Xie, D. (2017). Joint user and relay selection for cooperative NOMA networks. IEEE Access, 5, 20220–20227.

    Article  Google Scholar 

  33. Zhao, J., Ding, Z., Fan, P., Yang, Z., & Karagiannidis, G. K. (2018). Dual relay selection for cooperative NOMA with distributed space time coding. IEEE Access, 6, 20440–20450.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bachan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proof of proposition 1

In (19), \(\mathit{Pr}\left(\frac{{a}_{1}{X}_{1}}{{a}_{2}{X}_{1}+1}<{\Omega }_{th}\right)\) is the CDF of link \(BS\) to \({U}_{1}\) and it is equal to the CDF of a random variable (RV) \({X}_{i}\) which is given in (8). Thus, mathematically it can be represented as

$$ F_{{\Omega_{{BSU_{1} }} }} \left( {\Omega_{th} } \right) = F_{{X_{1} }} \left( {\tilde{\Omega }_{th} } \right) = \left[ {1 - exp\left( { - \frac{{\tilde{\Omega }_{th} }}{{\tilde{\theta }_{{BSU_{1} }} }}} \right)} \right] $$
(33)

The second part of (19), \(Pr\left(\frac{{a}_{1}{Y}_{m}{Z}_{1m}}{{a}_{2}{Y}_{m}{Z}_{1m}+{Y}_{m}+{Z}_{1m}+1}<{\Omega }_{th}\right)\) represents the CDF of the link \({R}_{m}\) to \({U}_{1}\) which can be solved by calculating the CDF of RV’s \({Y}_{m}\) and \({Z}_{1m}\) as given in (9) and (10).

The CDF of \({Y}_{m}\) is given as

$$ \begin{aligned} F_{{Y_{m} }} \left( {\Omega_{th} } \right) & = \left( {1 - exp\left( { - \frac{{\Omega_{th} }}{{\tilde{\theta }_{{BSR_{m} }} }}} \right)} \right)^{M} \\ &\quad.\left( {1 - exp\left( { - \frac{{\Omega_{th} }}{{\tilde{\theta }_{{BSR_{m} }} }}} \right)} \right)^{N} \\ & = 1 - \mathop \sum \limits_{m = 1}^{M} \left( {\begin{array}{*{20}c} M \\ m \\ \end{array} } \right)\left( { - 1} \right)^{{\left( {m - 1} \right)}} \\ &\quad\mathop \sum \limits_{n = 1}^{N} \left( {\begin{array}{*{20}c} N \\ n \\ \end{array} } \right)\left( { - 1} \right)^{{\left( {n - 1} \right)}} exp\left( { - \frac{{\left( {m + n} \right)\Omega_{th} }}{m}} \right) \\ \end{aligned} $$
(34)

The CDF of \({Z}_{1m}\) is given as

$$ F_{{Z_{1m} { }}} \left( {\Omega_{th} } \right) = 1 - exp\left( { - \frac{{\Omega_{th} }}{{\tilde{\theta }_{{R_{m} U_{1} }} }}} \right) $$
(35)

The CDF of the link \({R}_{m}\) to \({U}_{1}\) can be represented as

$$ \begin{aligned} &F_{{\Omega_{{R_{m} U_{1} }} }} \left( {\Omega_{th} } \right) \\ &\quad =\! F_{{Z_{1m} { }}} \left( {\tilde{\Omega }_{th} } \right) + \mathop \smallint \limits_{{\tilde{\Omega }_{th} }}^{\infty } \!\!F_{{Y_{m} }} \!\left( {\frac{{z\Omega_{th} + \Omega_{th} }}{{z\left( {a_{1} - a_{2} \Omega_{th} } \right)\! -\! \Omega_{th} }}} \right)\!f_{{Z_{1m} { }}} \left( z \right)dz \\ & \quad= F_{{Z_{1m} { }}} \left( {\tilde{\Omega }_{th} } \right) + \mathop \smallint \limits_{{\tilde{\Omega }_{th} }}^{\infty } F_{{Y_{m} }} \left( {\frac{{\tilde{\Omega }_{th} \left( {z + 1} \right)}}{{z - \tilde{\Omega }_{th} }}} \right)f_{{Z_{1m} { }}} \left( z \right)dz \\ \end{aligned} $$
(36)

By substituting (34) and (35) in (36), \({F}_{{\Omega }_{{R}_{m}{U}_{1}}}\left({\Omega }_{th}\right)\) is derived as

$$ \begin{aligned}& F_{{\Omega_{{R_{m} U_{1} }} }} \left( {\Omega_{th} } \right) \\ &\quad= 1 - \mathop \sum \limits_{m = 1}^{M} \left( {\begin{array}{*{20}c} M \\ m \\ \end{array} } \right)\left( { - 1} \right)^{{\left( {m - 1} \right)}} \mathop \sum \limits_{n = 1}^{N} \left( {\begin{array}{*{20}c} N \\ n \\ \end{array} } \right)\left( { - 1} \right)^{{\left( {n - 1} \right)}} \\ & \qquad\times \;exp\left[ { - \frac{{\left( {m + n} \right)\tilde{\Omega }_{th} }}{{\tilde{\theta }_{{BSR_{m} }} }} - \frac{{\tilde{\Omega }_{th} }}{{\tilde{\theta }_{{R_{m} U_{1} }} }}} \right]2\sqrt {\mu_{1} } K_{1} \left( {2\sqrt {\mu_{1} } } \right) \\ \end{aligned} $$
(37)

By substituting (33) and (37) in (19) outage probability of \({U}_{1}\) can be calculated as given in (20).

Appendix 2

Proof of Proposition 2

Similar to Proposition 1, the outage probability of \({U}_{2}\) can be derived as follows,

In (21), \(\mathit{Pr}\left(\frac{{a}_{1}{X}_{2}}{{a}_{2}{X}_{2}+1}<{\Omega }_{th}\right)\) denote the CDF of link \(BS\) to \({U}_{2}\), which is represented as

$$ F_{{\Omega_{{BSU_{2} }} }} \left( {\Omega_{th} } \right) = F_{{X_{2} }} \left( {\tilde{\Omega }_{th} } \right) = \left[ {1 - exp\left( { - \frac{\emptyset }{{\tilde{\theta }_{{BSU_{2} }} }}} \right)} \right] $$
(38)

The second part of (21), \(Pr\left(\frac{{a}_{2}{Y}_{m}{Z}_{2m}}{{Y}_{m}+{Z}_{2m}+1}<{\Omega }_{th}\right)\) represents the CDF of the link \({R}_{m}\) to \({U}_{2}\) which can be solved by calculating the CDF of RV’s: \({Y}_{m}\) and \({Z}_{2m}\) as given in (9) and (10).

The CDF of \({Z}_{2m}\) is given as

$$ F_{{Z_{2m} { }}} \left( {\Omega_{th} } \right) = 1 - exp\left( { - \frac{{\Omega_{th} }}{{\tilde{\theta }_{{R_{m} U_{2} }} }}} \right) $$
(39)

The CDF of the link \({R}_{m}\) to \({U}_{2}\) can be represented as

$$ \begin{aligned}& F_{{\Omega_{{R_{m} U_{2} }} }} \left( {\Omega_{th} } \right) \\ &\quad = F_{{Z_{2m} { }}} \left( \emptyset \right) + \mathop \smallint \limits_{{\tilde{\Omega }_{th} }}^{\infty } F_{{Y_{m} }} \left( {\frac{{z\Omega_{th} + \Omega_{th} }}{{z\left( {a_{1} - a_{2} \Omega_{th} } \right) - \Omega_{th} }}} \right)f_{{Z_{2m} { }}} \left( z \right)dz \\ &\quad = F_{{Z_{2m} { }}} \left( \emptyset \right) + \mathop \smallint \limits_{\emptyset }^{\infty } F_{{Y_{m} }} \left( {\frac{{\emptyset \left( {z + 1} \right)}}{z - \emptyset }} \right)f_{{Z_{2m} { }}} \left( z \right)dz \\ \end{aligned} $$
(40)

By substituting (34) and (39) in (40) \({F}_{{\Omega }_{{R}_{m}{U}_{2}}}\left({\Omega }_{th}\right)\) is derived as

$$ \begin{aligned} &F_{{\Omega_{{R_{m} U_{2} }} }} \left( {\Omega_{th} } \right) \\ &\quad= 1 - \mathop \sum \limits_{m = 1}^{M} \left( {\begin{array}{*{20}c} M \\ m \\ \end{array} } \right)\left( { - 1} \right)^{{\left( {m - 1} \right)}} \mathop \sum \limits_{n = 1}^{N} \left( {\begin{array}{*{20}c} N \\ n \\ \end{array} } \right)\left( { - 1} \right)^{{\left( {n - 1} \right)}} \\ & \qquad\times exp\left[ { - \frac{{\left( {m + n} \right)\emptyset }}{{\tilde{\theta }_{{BSR_{m} }} }} - \frac{\emptyset }{{\tilde{\theta }_{{R_{m} U_{2} }} }}} \right]2\sqrt {\mu_{2} } K_{1} \left( {2\sqrt {\mu_{2} } } \right) \\ \end{aligned} $$
(41)

By substituting (38) and (41) in (21) outage probability of \({U}_{2}\) can be calculated as given in (22).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachan, P., Shukla, A. & Bansal, A. Buffer-aided cooperative NOMA with partial relay selection. Telecommun Syst 80, 45–57 (2022). https://doi.org/10.1007/s11235-022-00884-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00884-4

Keywords

Navigation