Skip to main content
Log in

Interference management issues for the future 5G network: a review

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The future wireless Fifth Generation (5G) communication network required a higher bandwidth in order to achieve greater data rate. It will be largely characterized by small cell deployments, typically in the range of 200 meters of radius/cell, at most. The implementation of small size networks delivers various advantages such as high data rate and low signal delay. However, it also suffers from various issues such as inter-cell, intra-cell, and inter-user interferences. This paper discusses the issues related to interference management for 5G network from the perspective of Heterogeneous Network and Device-to-Device communication, by using enabling techniques, such as Inter-cell Interference Coordination, Coordinated Multipoint, and Coordinated Scheduling. Furthermore, several pertinent issues have been critically reviewed focusing on their methodologies, advantages and limitations along with the future work. Future directions proposed by the 3rd Generation Partnership Project for interference mitigation has also been outlined. This review will act as a guide for the researchers to comprehend various existing and emerging enabling interference mitigation techniques for further exploration and smooth implementation of 5G wireless network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prasad, A. R., Arumugam, S., Sheeba, B., & Zugenmaier, A. (2018). 3GPP 5G security. Journal of ICT Standardization, 6(1), 137–158.

    Google Scholar 

  2. Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Google Scholar 

  3. Patel, S., Chauhan, M., & Kapadiya, K. (2012). 5G: Future mobile technology-vision 2020. International Journal of Computer Applications, 54(17), 6–10.

    Google Scholar 

  4. Weber, S., Andrews, J. G., & Jindal, N. (2010). An overview of the transmission capacity of wireless networks. IEEE Transactions on Communications, 58(12), 3593–3604.

    Google Scholar 

  5. Talwar, S., Choudhury, D., Dimou, K., Aryafar, E., Bangerter, B., & Stewart, K. (2014). Enabling technologies and architectures for 5G wireless. In: 2014 IEEE MTT-S international microwave symposium (IMS) (pp. 1–4). IEEE.

  6. Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1(1), 335–349.

    Google Scholar 

  7. Qamar, F., Abbas, T., Hindia, M. N., Dimyati, K. B., Noordin, K. A. B., & Ahmed, I. (2017). Characterization of MIMO propagation channel at 15 GHz for the 5G spectrum. In: 2017 IEEE 13th Malaysia international conference on communications (MICC) (pp. 265–270). IEEE.

  8. Al-Samman, A. M., Rahman, T. A., Hadri, M., & Hindia, M. N. (2017). Path loss and RMS delay spread model for 5G channel at 19 GHz. In 2017 IEEE 13th international colloquium on signal processing and its applications (CSPA) (pp. 49–54). IEEE.

  9. Qamar, F., Siddiqui, M. H. S., Dimyati, K., Noordin, K. A. B., & Majed, M. B. (2017). Channel characterization of 28 and 38 GHz MM-wave frequency band spectrum for the future 5G network. In: 2017 IEEE 15th student conference on research and development (SCOReD) (pp. 291–296). IEEE.

  10. Abbas, T., Qamar, F., Ahmed, I., Dimyati, K., & Majed, M. B. (2017). Propagation channel characterization for 28 and 73 GHz millimeter-wave 5G frequency band. In 2017 IEEE 15th student conference on research and development (SCOReD) (pp. 297–302). IEEE.

  11. Aslam, S., Jang, J., & Lee, K.-G. (2018). Unified channel management for cognitive radio sensor networks aided internet of things. Sensors, 18(8), 2665.

    Google Scholar 

  12. Hindia, M. N., Qamar, F., Rahman, T. A., & Amiri, I. S. (2018). A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Networks, 74, 34–46.

    Google Scholar 

  13. Qamar, F., Dimyati, K. B., Hindia, M. N., Noordin, K. A. B., & Al-Samman, A. M. (2017). A comprehensive review on coordinated multi-point operation for LTE-A. Computer Networks, 123, 19–37.

    Google Scholar 

  14. Song, J., & Choi, W. (2018). Minimum cache size and backhaul capacity for cache-enabled small cell networks. IEEE Wireless Communications Letters, 7(4), 490–493.

    Google Scholar 

  15. Zhang, H., Chu, X., Guo, W., & Wang, S. (2015). Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 53(3), 158–164.

    Google Scholar 

  16. Mavromoustakis, C. X., Mastorakis, G., & Batalla, J. M. (2016). Internet of things (IoT) in 5G mobile technologies. Berlin: Springer.

    Google Scholar 

  17. Udeshi, D., & Qamar, F. (2014). Quality analysis of epon network for uplink and downlink design. Asian Journal of Engineering, Sciences & Technology, 4(2), 78–83.

    Google Scholar 

  18. Chung, Y.-L. (2017). An energy-efficient coverage algorithm for macrocell—Small cell network systems. Energies, 10(9), 1319.

    Google Scholar 

  19. Gachhadar, A., Hindia, M. N., Qamar, F., Siddiqui, M. H. S., Noordin, K. A., & Amiri, I. S. (2018). Modified genetic algorithm based power allocation scheme for amplify-and-forward cooperative relay network. Computers & Electrical Engineering, 69, 628–641.

    Google Scholar 

  20. Noordin, K. A. B., Hindia, M. N., Qamar, F., & Dimyati, K. (2018). Power allocation scheme using PSO for amplify and forward cooperative relaying network. In Science and information conference (pp. 636–647) Springer.

  21. Hindia, M. N., Qamar, F., Majed, M. B., Rahman, T. A., & Amiri, I. S. (2019). Enabling remote-control for the power sub-stations over LTE-A networks. Telecommunication Systems, 70(1), 37–53.

    Google Scholar 

  22. Alliance, N. (2015) 5G white paper. In Next generation mobile networks, white paper (pp. 1–125). https://www.ngmn.org/fileadmin/ngmn/content/images/news/ngmn_news/NGMN_5G_White_Paper_V1_0.pdf.

  23. Martín-Sacristán, D., Monserrat, J. F., Cabrejas-Peñuelas, J., Calabuig, D., Garrigas, S., & Cardona, N. (2009). On the way towards fourth-generation mobile: 3GPP LTE and LTE-advanced. EURASIP Journal on Wireless Communications and Networking, 2009, 4.

    Google Scholar 

  24. Dighriri, M., Lee, G. M., & Baker, T. (2018). Measurement and classification of smart systems data traffic over 5G mobile networks. In M. Dastbaz, H. Arabnia & B. Akhgar (Eds.), Technology for smart futures (pp. 195–217). Cham: Springer.

    Google Scholar 

  25. Xu, Y., Deng, J. D., Nowostawski, M., & Purvis, M. K. (2015). Optimized routing for video streaming in multi-hop wireless networks using analytical capacity estimation. Journal of Computer and System Sciences, 81(1), 145–157.

    Google Scholar 

  26. Antonakoglou, K., Xu, X., Steinbach, E., Mahmoodi, T., & Dohler, M. (2018). Towards haptic communications over the 5G tactile Internet. IEEE Communications Surveys & Tutorials, 20(4), 3034–3059.

    Google Scholar 

  27. Al Katsha, M. Z., & Ramli, H. A. M. (2016). Development of a novel component carrier selection algorithm in Long Term Evolution-Advanced (LTE-A) with carrier aggregation. In 2016 IEEE student conference on research and development (SCOReD) (pp 1–5). IEEE.

  28. Akbari, M., Reza, A. W., Noordin, K. A., Dimyati, K., Riahi Manesh, M., & Hindia, M. N. (2016). Recent efficient iterative algorithms on cognitive radio cooperative spectrum sensing to improve reliability and performance. International Journal of Distributed Sensor Networks, 12(1), 3701308.

    Google Scholar 

  29. Lee, J., et al. (2018). Spectrum for 5G: Global status, challenges, and enabling technologies. IEEE Communications Magazine, 56(3), 12–18.

    Google Scholar 

  30. Hattab, G., Visotsky, E., Cudak, M., & Ghosh, A. (2018). Interference mitigation techniques for coexistence of 5G mm wave users with incumbents at 70 and 80 GHz. arXiv:1801.05405.

  31. Baldemair, R., et al. (2015). Ultra-dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208.

    Google Scholar 

  32. Zhu, X., Zeng, J., Su, X., Xiao, C., Wang, J., & Huang, L. (2016). On the virtual cell transmission in ultra dense networks. Entropy, 18(10), 374.

    Google Scholar 

  33. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.

    Google Scholar 

  34. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A.-H., & Leung, V. C. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine, 55(8), 138–145.

    Google Scholar 

  35. Hussein, H. H., & El-Kader, S. M. A. (2017). Enhancing signal to noise interference ratio for device to device technology in 5G applying mode selection technique. In 2017 international conference on advanced control circuits systems (ACCS) systems and 2017 international conference on new paradigms in electronics and information technology (PEIT) (pp 187–192). IEEE.

  36. Nguyen, N.-P., Duong, T. Q., Ngo, H. Q., Hadzi-Velkov, Z., & Shu, L. (2016). Secure 5G wireless communications: A joint relay selection and wireless power transfer approach. IEEE Access, 4, 3349–3359.

    Google Scholar 

  37. Pabst, R., et al. (2004). Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communications Magazine, 42(9), 80–89.

    Google Scholar 

  38. Aldhaibani, J. A., Yahya, A., & Ahmad, R. B. (2014). Coverage extension and balancing the transmitted power of the moving relay node at LTE-A cellular network. The Scientific World Journal, 2014, 1–10.

    Google Scholar 

  39. Jeon, S.-W., & Gastpar, M. (2012). A survey on interference networks: Interference alignment and neutralization. Entropy, 14(10), 1842–1863.

    Google Scholar 

  40. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617–1655.

    Google Scholar 

  41. Khakurel, S., Mehta, M., & Karandikar, A. (2012). Optimal relay placement for coverage extension in LTE-A cellular systems. In 2012 national conference on communications (NCC) (pp. 1–5). IEEE.

  42. Alsharif, M. H., & Nordin, R. (2017). Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommunication Systems, 64(4), 617–637.

    Google Scholar 

  43. Bao, V. N. Q., & Kong, H. Y. (2010). Performance analysis of decode-and-forward relaying with partial relay selection for multihop transmission over rayleigh fading channels. Journal of Communications and Networks, 12(5), 433–441.

    Google Scholar 

  44. Roden, R. J., & Tayler, D. (1993). Frame relay networks. Digital Technical Journal, 5(1), 1–8.

    Google Scholar 

  45. Ge, X., Cheng, H., Guizani, M., & Han, T. (2014). 5G wireless backhaul networks: Challenges and research advances. IEEE Network, 28(6), 6–11.

    Google Scholar 

  46. Seo, J., & Sung, Y. (2018). Beam design and user scheduling for nonorthogonal multiple access with multiple antennas based on pareto optimality. IEEE Transactions on Signal Processing, 66(11), 2876–2891.

    Google Scholar 

  47. Muruganathan, S. D., Lin, X., Maattanen, H.-L., Zou, Z., Hapsari, W. A., & Yasukawa, S. J. a. p. a. (2018). An overview of 3GPP release-15 study on enhanced LTE support for connected drones. https://arxiv.org/ftp/arxiv/papers/1805/1805.00826.pdf.

  48. Checko, A., et al. (2015). Cloud RAN for mobile networks—A technology overview. IEEE Communications Surveys & Tutorials, 17(1), 405–426.

    Google Scholar 

  49. Bhushan, N., et al. (2014). Network densification: The dominant theme for wireless evolution into 5G. IEEE Communications Magazine, 52(2), 82–89.

    Google Scholar 

  50. Nam, W., Bai, D., Lee, J., & Kang, I. (2014). Advanced interference management for 5G cellular networks. IEEE Communications Magazine, 52(5), 52–60.

    Google Scholar 

  51. Feng, D., Jiang, C., Lim, G., Cimini, L. J., Feng, G., & Li, G. Y. (2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys & Tutorials, 15(1), 167–178.

    Google Scholar 

  52. Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101.

    Google Scholar 

  53. Onireti, O., Héliot, F., & Imran, M. A. (2012). On the energy efficiency-spectral efficiency trade-off in the uplink of CoMP system. IEEE Transactions on Wireless Communications, 11(2), 556–561.

    Google Scholar 

  54. Beigh, A. N., & Kaur, Er. P. (2018). Inter-cell interference. International Journal of Trend in Scientific Research and Development, 2(6), 43–46.

    Google Scholar 

  55. Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Di Renzo, M. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.

    Google Scholar 

  56. Seo, H., Kijun, K. I. M., & Kim, B. (2016). Method and apparatus for inter-cell interference coordination for transmission point group. US Patent 9,264,204.

  57. Pang, J., Wang, J., Wang, D., Shen, G., Jiang, Q., & Liu, J. (2012). Optimized time-domain resource partitioning for enhanced inter-cell interference coordination in heterogeneous networks. In 2012 IEEE wireless communications and networking conference (WCNC) (pp. 1613–1617). IEEE.

  58. Gesbert, D., Hanly, S., Huang, H., Shitz, S. S., Simeone, O., & Yu, W. (2010). Multi-cell MIMO cooperative networks: A new look at interference. IEEE Journal on Selected Areas in Communications, 28(9), 1380–1408.

    Google Scholar 

  59. Zhang, S., Liu, L., Cheng, Y., Cao, X., & Cai, L. (2018). Energy-efficient beamforming for massive MIMO with inter-cell interference and inaccurate CSI. In 2018 international conference on computing, networking and communications (ICNC) (pp. 518–523). IEEE.

  60. Yang, H. J., Shin, W.-Y., Jung, B. C., Suh, C., & Paulraj, A. (2017). Opportunistic downlink interference alignment for multi-cell MIMO networks. IEEE Transactions on Wireless Communications, 16(3), 1533–1548.

    Google Scholar 

  61. Seo, H., Lee, D., Kim, B., Kijun, K., & Seo, I. (2017). Inter-cell interference coordination in a wireless communication system. US Patent 9,742,546.

  62. Kim, J., Hwang, I. S., & Kang, C. G. (2011). Cooperative beamforming for inter-cell interference mitigation. In 2011 international conference on ICT convergence (ICTC) (pp. 333–334). IEEE.

  63. Chee, D., Kim, J., Ahn, W.-G., Jo, O., Lee, J. Y., & Cho, D.-H. (2011). Design and performance evaluation of virtual cellular networks mitigating inter-cell interference in indoor environments. In 2011 international conference on ICT convergence (ICTC) (pp. 199–203). IEEE.

  64. Jiang, S., Yu, F. R., & Sun, Y. (2013). Distributed energy-efficient inter-cell interference control with BS sleep mode and user fairness in cellular networks. In 2013 IEEE global communications conference (GLOBECOM) (pp. 2581–2586). IEEE.

  65. Al-Doori B., & Liu, X. (2016). Enabling NAICS to mitigate inter-cell interference in evolving wireless networks. in Military communications conference, MILCOM 20162016 IEEE (pp. 436–441). IEEE.

  66. Morel, M.-L. A., & Randriamasy, S. (2017). Quality of experience-aware enhanced inter-cell interference coordination for self organized HetNet. In Wireless and mobile networking conference (WMNC), 2017 10th IFIP (pp. 1–8). IEEE.

  67. Lopez-Perez, D., Guvenc, I., De la Roche, G., Kountouris, M., Quek, T. Q., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless communications, 18(3), 22–30.

    Google Scholar 

  68. Madan, R., Borran, J., Sampath, A., Bhushan, N., Khandekar, A., & Ji, T. (2010). Cell association and interference coordination in heterogeneous LTE-A cellular networks. IEEE Journal on Selected Areas in Communications, 28(9), 1479–1489.

    Google Scholar 

  69. Beckman, J. E., Yu, Y., Luo, L., & Fan, Z. (2017). Joint spatial processing for space frequency block coding and/or non space frequency block coding channels. US Patents 9,374,175.

  70. Zhang, H., Chen, S., Li, X., Ji, H., & Du, X. (2015). Interference management for heterogeneous networks with spectral efficiency improvement. IEEE Wireless Communications, 22(2), 101–107.

    Google Scholar 

  71. Deb, S., Monogioudis, P., Miernik, J., & Seymour, J. P. (2014). Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Transactions on Networking, 22(1), 137–150.

    Google Scholar 

  72. Pedersen, K. I., Wang, Y., Strzyz, S., & Frederiksen, F. (2013). Enhanced inter-cell interference coordination in co-channel multi-layer LTE-advanced networks. IEEE Wireless Communications, 20(3), 120–127.

    Google Scholar 

  73. Sun, S., Gao, Q., Peng, Y., Wang, Y., & Song, L. (2013). Interference management through CoMP in 3GPP LTE-advanced networks. IEEE Wireless Communications, 20(1), 59–66.

    Google Scholar 

  74. Pedersen, K. I., Wang, Y., Soret, B., & Frederiksen, F. (2012). eICIC functionality and performance for LTE HetNet co-channel deployments. In Vehicular technology conference (VTC Fall), 2012 IEEE (pp. 1–5). IEEE.

  75. Wang, Y., & Pedersen, K. I. (2012). Performance analysis of enhanced inter-cell interference coordination in LTE-Advanced heterogeneous networks. In Vehicular technology conference (VTC Spring), 2012 IEEE 75 th (pp. 1–5). IEEE.

  76. Soret, B., Wang, H., Pedersen, K. I., & Rosa, C. (2013). Multicell cooperation for LTE-advanced heterogeneous network scenarios. IEEE Wireless Communications, 20(1), 27–34.

    Google Scholar 

  77. Ghosh, A. et al. (2012). Heterogeneous cellular networks: From theory to practice. IEEE communications magazine, 50(6), 54–64.

    Google Scholar 

  78. Damnjanovic, A. et al. (2011) A survey on 3GPP heterogeneous networks. IEEE Wireless communications, 18(3), 10–21.

    Google Scholar 

  79. Niu, H., Fwu, J.-K., & Yang, X. (2016). Method to support an asymmetric time-division duplex (TDD) configuration in a heterogeneous network (HetNet). US Patent 9,504,084.

  80. Liu, J., Wang, D., Pang, J., Wang, J., & Shen, G. (2010). Inter-cell interference coordination based on soft frequency reuse for relay enhanced cellular network. In 2010 IEEE 21st international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 2304–2308). IEEE.

  81. Han, Y., Chang, Y., Cui, J., & Yang, D. (2010). A novel inter-cell interference coordination scheme based on dynamic resource allocation in LTE-TDD systems. In Vehicular technology conference (VTC 2010-Spring), 2010 IEEE 71st (pp. 1–5). IEEE.

  82. Higuchi, K., Saito, Y., & Nakao, S. (2013). Inter-cell interference coordination using coordinated inter-cell interference power control in uplink. In 2013 7th international conference on signal processing and communication systems (ICSPCS) (pp. 1–5). IEEE.

  83. Lu, S.-H., Lai, W.-P., & Wang, L.-C. (2014). Time domain coordination for inter-cell interference reduction in LTE hierarchical cellular systems. In 2014 10th International conference on heterogeneous networking for quality, reliability, security and robustness (QShine) (pp. 51–55). IEEE.

  84. Ezzaouia, M., Gueguen, C., Yassin, M., Ammar, M., Lagrange, X., & Bouallegue, A. (2017). Autonomous and dynamic inter-cell interference coordination techniques for future wireless networks. In WiMob 2017-13th IEEE international conference on wireless and mobile computing, networking and communications.

  85. Hoshino, K., Nabatame, S., Nagate, A., & Fujii, T. (2015). Inter-cell interference coordination by horizontal beamforming for small cells in 3D cell structure. In Wireless communications and networking conference workshops (WCNCW), 2015 IEEE (pp. 364–368). IEEE.

  86. Nuraini, H. (2016). Inter-cell interference coordination with soft frequency reuse method for LTE network. In 2016 2nd international conference on wireless and telematics (ICWT) (pp. 57–61). IEEE.

  87. Huang, J., Li, J., Chen, Z., & Pan, H. (2018). HICIC: Hybrid inter-cell interference coordination for two-tier heterogeneous networks with non-uniform topologies. IEEE Access, 6, 34707–34723.

    Google Scholar 

  88. Simsek, M., Bennis, M., & Czylwik, A. (2012). Dynamic inter-cell interference coordination in HetNets: A reinforcement learning approach. In Global communications conference (GLOBECOM), 2012 IEEE (pp. 5446–5450). IEEE.

  89. Xu, S., Han, J., & Chen, T. (2012). Enhanced inter-cell interference coordination in heterogeneous networks for LTE-advanced. In Vehicular technology conference (VTC Spring), 2012 IEEE 75th (pp. 1–5). IEEE.

  90. Ermolova, N. Y., & Tirkkonen, O. (2017). Interference analysis in wireless networks operating over arbitrary fading channels with heterogeneous poisson fields of transmitters and interferers. IEEE Signal Processing Letters, 24(9), 1388–1392.

    Google Scholar 

  91. Zhang, J., Qu, S., & Zhang, H. (2016). Regularized interference alignment for heterogeneous networks. In 2016 8th IEEE international conference on communication software and networks (ICCSN) (pp. 201–205). IEEE.

  92. Narmanlioglu, O., & Zeydan, E. (2017). Interference coordination in SDN-based heterogeneous mobile networks. In 2017 IEEE international black sea conference on communications and networking (BlackSeaCom) (pp. 1–6). IEEE.

  93. Dong, Y., Chen, Z., Fan, P., & Letaief, K. B. (2016). Mobility-aware uplink interference model for 5G heterogeneous networks. IEEE Transactions on Wireless Communications, 15(3), 2231–2244.

    Google Scholar 

  94. Kang, I., Han, S., & You, C. (2018). A study on the effect of moving small cell in heterogeneous networks with interference cancellation. in 2018 tenth international conference on ubiquitous and future networks (ICUFN) (pp. 338–340). IEEE.

  95. Osseiran, A., Monserrat, J. F., & Marsch, P. (2016). 5G mobile and wireless communications technology. Cambridge: Cambridge University Press.

    Google Scholar 

  96. Mumtaz, S., Huq, K. M. S., & Rodriguez, J. (2014). Direct mobile-to-mobile communication: Paradigm for 5G. IEEE Wireless Communications, 21(5), 14–23.

    Google Scholar 

  97. Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52(5), 86–92.

    Google Scholar 

  98. Shen, X. (2015). Device-to-device communication in 5G cellular networks. IEEE Network, 29(2), 2–3.

    Google Scholar 

  99. Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215.

    Google Scholar 

  100. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

    Google Scholar 

  101. Liao, H.-S., Chen, P.-Y., & Chen, W.-T. (2014). An efficient downlink radio resource allocation with carrier aggregation in LTE-advanced networks. IEEE Transactions on Mobile Computing, 13(10), 2229–2239.

    Google Scholar 

  102. Rostami, S., Arshad, K., & Rapajic, P. (2013). Aggregation-based spectrum assignment in cognitive radio networks. In 2013 international conference on advanced computing and communication systems (ICACCS) (pp. 1–6). IEEE.

  103. Chayon, H. R., Dimyati, K., Ramiah, H., & Reza, A. W. (2017). An improved radio resource management with carrier aggregation in LTE advanced. Applied Sciences, 7(4), 394.

    Google Scholar 

  104. Ma, C., Liu, J., Tian, X., Yu, H., Cui, Y., & Wang, X. (2015). Interference exploitation in D2D-enabled cellular networks: A secrecy perspective. IEEE Transactions on Communications, 63(1), 229–242.

    Google Scholar 

  105. Zhou, Z., Ota, K., Dong, M., & Xu, C. (2017). Energy-efficient matching for resource allocation in D2D enabled cellular networks. IEEE Transactions on Vehicular Technology, 66(6), 5256–5268.

    Google Scholar 

  106. Mustafa, H. A. U., Imran, M. A., Shakir, M. Z., Imran, A., & Tafazolli, R. (2016). Separation framework: An enabler for cooperative and D2D communication for future 5G networks. IEEE Communications Surveys & Tutorials, 18(1), 419–445.

    Google Scholar 

  107. Benn, H. (2014). Vision and key features for 5th generation (5G) cellular. Samsung R&D Institute UK. https://www.scribd.com/document/293389711/RadioTech-30-01-14-HowardBenn-Samsung-pdf.

  108. Asadi, A., & Mancuso, V. (2017). Network-assisted outband D2D-clustering in 5G cellular networks: Theory and practice. IEEE Transactions on Mobile Computing, 16(8), 2246–2259.

    Google Scholar 

  109. Wu, Y., et al. (2014). Green transmission technologies for balancing the energy efficiency and spectrum efficiency trade-off. IEEE Communications Magazine, 52(11), 112–120.

    Google Scholar 

  110. Ni, Y., Jin, S., Xu, W., Wang, Y., Matthaiou, M., & Zhu, H. (2016). Beamforming and interference cancellation for D2D communication underlaying cellular networks. IEEE Transactions on Communications, 64(2), 832–846.

    Google Scholar 

  111. Pan, J.-Y., & Liu, Y.-Y. (2015). Device-to-device interference avoidance underlaying cellular downlink transmission. In 2015 21st Asia-Pacific conference on communications (APCC) (pp. 464–469). IEEE.

  112. Wei, L., Hu, R. Q., He, T., & Qian, Y. (2013). Device-to-device (D2D) communications underlaying MU-MIMO cellular networks. In Globecom workshops (GC Wkshps), 2013 IEEE (pp. 4902–4907). IEEE.

  113. Duong, Q., & Shin, O.-S. (2013). Distance-based interference coordination for device-to-device communications in cellular networks. In 2013 fifth international conference on ubiquitous and future networks (ICUFN) (pp. 776–779). IEEE.

  114. Zeng, S., Wang, C., Qin, C., & Wang, W. (2018). Interference alignment assisted by D2D communication for the downlink of MIMO heterogeneous networks. IEEE Access, 6, 24757–24766.

    Google Scholar 

  115. Yang, L., Zhang, W., & Jin, S. (2015). Interference alignment in device-to-device LAN underlaying cellular networks. IEEE Transactions on Wireless Communications, 14(7), 3715–3723.

    Google Scholar 

  116. Peng, T., Lu, Q., Wang, H., Xu, S., & Wang, W. (2009). Interference avoidance mechanisms in the hybrid cellular and device-to-device systems. In 2009 IEEE 20th international symposium on personal, indoor and mobile radio communications (pp. 617–621). IEEE.

  117. Chou, H.-J., & Chang, R. Y. (2017). Joint mode selection and interference management in device-to-device communications underlaid MIMO cellular networks. IEEE Transactions on Wireless Communications, 16(2), 1120–1134.

    Google Scholar 

  118. Ramezani-Kebrya, A., Dong, M., Liang, B., Boudreau, G., & Seyedmehdi, S. H. (2017). Joint power optimization for device-to-device communication in cellular networks with interference control. IEEE Transactions on Wireless Communications, 16(8), 5131–5146.

    Google Scholar 

  119. Tao, Y., Sun, J., & Shao, S. (2013). Radio resource allocation based on greedy algorithm and successive interference cancellation in device-to-device (D2D) communication. In IET International Conference on Information and Communications Technologies (IETICT, 2013) pp. 452–458.

  120. Jungnickel, V., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.

    Google Scholar 

  121. Cui, Q., et al. (2014). Evolution of limited-feedback CoMP systems from 4G to 5G: CoMP features and limited-feedback approaches. IEEE Vehicular Technology Magazine, 9(3), 94–103.

    Google Scholar 

  122. Gorce, J.-M., Tsilimantos, D., Ferrand, P., & Poor, H. V. (2014). Energy-capacity trade-off bounds in a downlink typical cell. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC) (pp. 1409–1414). IEEE.

  123. Österling, J. (2015). COMP operation in cellular communication networks. US Patent 9,071,290.

  124. Lee, D. et al. (2012). Coordinated multipoint transmission and reception in LTE-advanced: Deployment scenarios and operational challenges. IEEE Communications Magazine, 50(2), 148–155.

    Google Scholar 

  125. Burström, P., De Bruin, P., Hagerman, B., Simonsson, A., & Skillermark, P. (2016). Performing coordinated multipoint transmission and reception (CoMP) in a wireless communication network. US Patent 9,281,876.

  126. Lee, J. et al. (2012). Coordinated multipoint transmission and reception in LTE-advanced systems. IEEE Communications Magazine, 50(11), 44–50.

    Google Scholar 

  127. Zhao, J., Quek, T. Q., & Lei, Z. (2013). Coordinated multipoint transmission with limited backhaul data transfer. IEEE Transactions on Wireless Communications, 12(6), 2762–2775.

    Google Scholar 

  128. Irmer, R., et al. (2011). Coordinated multipoint: Concepts, performance, and field trial results. IEEE Communications Magazine, 49(2), 102–111.

    Google Scholar 

  129. Wang, Q., Jiang, D., Jin, J., Liu, G., Yan, Z., & Yang, D. (2009). Application of BBU + RRU based CoMP system to LTE-Advanced. In IEEE international conference on communications workshops, 2009. ICC workshops 2009 (pp. 1–5). IEEE.

  130. Nigam, G., Minero, P., & Haenggi, M. (2014). Coordinated multipoint joint transmission in heterogeneous networks. IEEE Transactions on Communications, 62(11), 4134–4146.

    Google Scholar 

  131. Fu, S., Wu, B., Ho, P.-H., & Ling, X. (2012). Interference coordination in CoMP with transmission scheduling and game theoretical power reallocation. In 2012 IEEE international conference on communications (ICC) (pp. 4212–4217). IEEE.

  132. Zetterberg, P., & Moghadam, N. N. (2012). An experimental investigation of SIMO, MIMO, interference-alignment (IA) and coordinated multi-point (CoMP). In 2012 19th international conference on systems, signals and image processing (IWSSIP) (pp. 211–216). IEEE.

  133. Hamza, A. M., Mark, J. W., & Sourour, E. A. (2018). Interference analysis and mitigation for time-asynchronous OFDM CoMP systems. IEEE Transactions on Wireless Communications, 17(7), 4780–4791.

    Google Scholar 

  134. Huang, S.-Y., Lin, K.-M., & Deng, J.-H. (2014). Interference alignment with efficient dynamic information selection for LTE-A uplink coordinated multipoint systems. In 2014 IEEE Asia Pacific conference on wireless and mobile (pp. 72–77). IEEE.

  135. Jang, H.-C., & Wend, W.-D. (2015). Interference management using frequency reuse and CoMP for LTE-advanced networks. In 2015 seventh international conference on ubiquitous and future networks (ICUFN) (pp. 740–745). IEEE.

  136. El Gamal, A., Annapureddy, V. S., & Veeravalli, V. V. (2014). Interference channels with coordinated multipoint transmission: Degrees of freedom, message assignment, and fractional reuse. IEEE Transactions on Information Theory, 60(6), 3483–3498.

    Google Scholar 

  137. Wang, S., Zhao, Y., Zhu, S., & Chen, G. (2015). SLNR based cascaded interference align precoding in CoMP. In 11th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2015).

  138. Nossenson, R., Bellaiche, Y., & Hababou, D. (2013). On the potential of application based Coordinated Multi-point (CoMP). In 2013 IEEE international conference on microwaves, communications, antennas and electronics systems (COMCAS) (pp. 1–2). IEEE.

  139. Huang, C.-J., Chung, G.-H., Chung, W.-H., & Lee, T.-S. (2013). Efficient interference alignment aided transceiver design for LTE-A uplink coordinated multipoint systems. In 2013 IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 1436–1440). IEEE.

  140. Zhang, H., Venturino, L., Prasad, N., Li, P., Rangarajan, S., & Wang, X. (2011). Weighted sum-rate maximization in multi-cell networks via coordinated scheduling and discrete power control. IEEE Journal on Selected Areas in Communications, 29(6), 1214–1224.

    Google Scholar 

  141. Dahrouj, H., & Yu, W. (2010). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE transactions on wireless communications, 9(5), 1748–1759.

    Google Scholar 

  142. Yu, W., Kwon, T., & Shin, C. (2013). Multicell coordination via joint scheduling, beamforming, and power spectrum adaptation. IEEE Transactions on Wireless Communications, 12(7), 1–14.

    Google Scholar 

  143. Michaloliakos, A., Ao, W. C., Psounis, K., & Zhang, Y. (2018). Asynchronously coordinated multi-timescale beamforming architecture for multi-cell networks. IEEE/ACM Transactions on Networking, 26(1), 61–75.

    Google Scholar 

  144. Hong, M., Sun, R., Baligh, H., & Luo, Z.-Q. (2013). Joint base station clustering and beamformer design for partial coordinated transmission in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 31(2), 226–240.

    Google Scholar 

  145. Venturino, L., Prasad, N., & Wang, X. (2010). Coordinated linear beamforming in downlink multi-cell wireless networks. IEEE Transactions on Wireless Communications, 9(4).

  146. Baracca, P., Boccardi, F., & Braun, V. (2012). A dynamic joint clustering scheduling algorithm for downlink CoMP systems with limited CSI. In 2012 international symposium on wireless communication systems (ISWCS) (pp. 830–834). IEEE.

  147. Chen, X., & Yin, R. (2013). Performance analysis for physical layer security in multi-antenna downlink networks with limited CSI feedback. IEEE Wireless Communications Letters, 2(5), 503–506.

    Google Scholar 

  148. Ahmed, Y. N. (2017). A novel multiuser MIMO scheduling technique for limited feedback systems. In 2017 13th international computer engineering conference (ICENCO) (pp. 354–357). IEEE.

  149. Deghel, M., Assaad, M., Debbah, M., & Ephremides, A. (2018). Traffic-aware scheduling and feedback allocation in multichannel wireless networks. IEEE Transactions on Wireless Communications, 17(8), 5520–5534.

    Google Scholar 

  150. Liu, S., Cui, J., Xu, J., & Tao, X. (2016). A channel estimation error adapted uplink scheduling algorithm in coordinated MIMO systems. In 2016 IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–6). IEEE.

  151. Jeong, M. R., & Miki, N. (2013). A simple scheduling restriction scheme for interference coordinated networks. IEICE Transactions on Communications, 96(6), 1306–1317.

    Google Scholar 

  152. Douik, A., Dahrouj, H., Al-Naffouri, T. Y., & Alouini, M.-S. (2016). Coordinated scheduling and power control in cloud-radio access networks. IEEE Transactions on Wireless Communications, 15(4), 2523–2536.

    Google Scholar 

  153. Shen, K., & Yu, W. (2016). Coordinated uplink scheduling and beamforming for wireless cellular networks via sum-of-ratio programming and matching. in 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3531–3535). IEEE.

  154. Douik, A., Dahrouj, H., Al-Naffouri, T. Y., & Alouini, M.-S. (2018). Distributed hybrid scheduling in multi-cloud networks using conflict graphs. IEEE Transactions on Communications, 66(1), 209–224.

    Google Scholar 

  155. Yang, Y., Zhang, Q., Shang, P., & Liu, J. (2014). Interference alignment based coordinated scheduling for uplink small cell enhancement. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC) (pp. 1109–1114). IEEE.

  156. Li, M., Collings, I. B., Hanly, S. V., Liu, C., & Whiting, P. (2016). Multicell coordinated scheduling with multiuser zero-forcing beamforming. IEEE Transactions on Wireless Communications, 15(2), 827–842.

    Google Scholar 

  157. Chen, C.-Y., Chen, Y.-Y., & Wei, H.-Y. (2016). Multi-cell interference coordinated scheduling in mmWave 5G cellular systems. In 2016 eighth international conference on ubiquitous and future networks (ICUFN) (pp. 912–917). IEEE.

  158. Kim, J., Park, J., & Kang, C. G. (2012). Performance of user and beam scheduling for coordinated multi-cell system. In 2012 international conference on ICT convergence (ICTC) (pp. 685–686). IEEE.

  159. Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communications, 21(3), 118–127.

    Google Scholar 

  160. Dao, N.-N., Park, M., Kim, J., Paek, J., & Cho, S. (2018). Resource-aware relay selection for inter-cell interference avoidance in 5G heterogeneous network for Internet of Things systems. Future Generation Computer Systems, 93, 877–887.

    Google Scholar 

  161. Noura, M., & Nordin, R. (2016). A survey on interference management for device-to-device (D2D) communication and its challenges in 5G networks. Journal of Network and Computer Applications, 71, 130–150.

    Google Scholar 

  162. Łukowa, A., & Venkatasubramanian, V. (2019). Centralized UL/DL resource allocation for flexible TDD systems with interference cancellation. IEEE Transactions on Vehicular Technology, 68(3), 2443–2458.

    Google Scholar 

  163. Seyama, T., Tsutsui, T., Oyama, T., Kobayashi, T., Dateki, H., Seki, M., et al. (2016). Study of coordinated radio resource scheduling algorithm for 5G ultra highdensity distributed antenna systems. IEICE Technical Report, 115(472), 181–186.

    Google Scholar 

  164. Siddique, U., Tabassum, H., Hossain, E., & Kim, D. I. (2015). Wireless backhauling of 5G small cells: Challenges and solution approaches. IEEE Wireless Communications, 22(5), 22–31.

    Google Scholar 

  165. Shaat, M., Lagunas, E., Perez-Neira, A. I., & Chatzinotas, S. (2018). Integrated terrestrial-satellite wireless backhauling: Resource management and benefits for 5G. IEEE Vehicular Technology Magazine, 13(3), 39–47.

    Google Scholar 

  166. Cariou, L., & Stacey, R. (2018). Report for inter-bss interference avoidance. US Patents 15/384,934.

  167. Mahmood, N. H., Pedersen, K. I., & Mogensen, P. (2017). Interference aware inter-cell rank coordination for 5G systems. IEEE Access, 5, 2339–2350.

    Google Scholar 

  168. Shafi, M., et al. (2017). 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201–1221.

    Google Scholar 

  169. Wu, S., Liu, F., Zeng, Z., & Xia, H. (2016). Cooperative sleep and power allocation for energy saving in dense small cell networks. IEEE Access, 4, 6993–7004.

    Google Scholar 

  170. Ma, W., Zhao, H., Liu, Y., Shao, S., & Pan, W. (2018). A Co-channel interference rejection method for 5G ultra dense heterogeneous networks. In 2018 IEEE international conference on communications workshops (ICC Workshops) (pp. 1–5). IEEE.

  171. 3GPP TS 38.212. (2018). NR: Multiplexing and channel coding (Rel-15), v15.3.0. www.3gpp.org/ftp/Specs/archive/38_series/38.212/.

  172. 3GPP TS 38.213. (2018). NR: Physical layer procedures for control (Rel-15), v15.3.0. www.3gpp.org/ftp/Specs/archive/38_series/38.213/.

  173. Yang, L., & Zhang, W. (2014). Interference alignment in device-to-device LAN underlaying cellular networks. In 2014 IEEE international conference on communication systems (ICCS) (pp. 21–25). IEEE.

  174. 3GPP RP-80. (2018). 3GPPRAN#80 - Meeting #80 RP-181345. https://portal.3gpp.org/Home.aspx#/meeting?MtgId=18663.

  175. 3GPP RP-79. (2018). 3GPPRAN#79 - Meeting information RP-183836. https://portal.3gpp.org/Home.aspx#/meeting?MtgId=18659.

  176. Ng, B. L., Chandrasekhar, V., Nam, Y.-H., & Kim, J. (2018). Beam management of downlink data channel and downlink control channel for 5G next radio systems. US Patent 10/148,337.

Download references

Acknowledgements

The authors would like to acknowledge EPSRC Grant EP/P028764/1 (UM IF035-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Sadegh Amiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qamar, F., Hindia, M.H.D.N., Dimyati, K. et al. Interference management issues for the future 5G network: a review. Telecommun Syst 71, 627–643 (2019). https://doi.org/10.1007/s11235-019-00578-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00578-4

Keywords

Navigation