Skip to main content
Log in

Impact of MIMO enabled relay on the performance of a hybrid satellite-terrestrial system

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate a hybrid satellite terrestrial system with multiple input and multiple output enabled fixed relay, which is more reliable than the conventional dual-hop multiple single input and single output relaying network. Providing a small number of antennas on a fixed relay is easier to undertake than setting up on a mobile terminal due to the size limitation. In this study, we consider the impact of cooperating fixed relay with multiple transmitting and receiving antennas on the hybrid satellite-terrestrial system. Amplify-and-forward cooperative protocol is used at the relay node while for signal combining at the relay node, maximum ratio combining and maximum ratio transmission techniques are used. Independent and non-identically distributed fading channels, shadowed Rician, and Nakagami-\(m\), are assumed between the source-relay and relay-destination links respectively. An analytical approach is derived to evaluate the performance of the system in terms of outage probability, symbol error rate (SER) and ergodic capacity. The closed form expressions for the probability density function, cumulative distribution function, moment generating function, average SER of the total end-to-end signal-to-noise ratio are derived. We further derive the approximate closed form expression of ergodic capacity. These derived analytical expressions are applied to the general operating conditions together with available satellite channel data of various degrees of shadowing. The analytical results are compared with Monte Carlo simulations. The results show the improvement in the performance of the hybrid satellite-terrestrial system under various antenna arrangements at the relay node.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abdi, A., Lau, W., Alouini, M., & Kaveh, M. (2003). A new simple model for land mobile satellite channels: first-and second-order statistics. IEEE Transactions on Wireless Communications, 2(3), 519–528.

    Article  Google Scholar 

  2. Ahn, D., Kim, S., Kim, H., & Park, D. (2010). A cooperative transmit diversity scheme for mobile satellite broadcasting systems. International Journal of Satellite Communications and Networking, 28(5–6), 352–368.

    Article  Google Scholar 

  3. Alfano, G., & De Maio, A. (2007). Sum of squared shadowed-rice random variables and its application to communication systems performance prediction. IEEE Transactions on Wireless Communications, 6(10), 3540–3545.

    Article  Google Scholar 

  4. Annex: Annex 4 to working party 4b chairman’s report on the 26th meeting, Document 4B/85, 27 May (2009).

  5. Chen, S., Wang, W., Zhang, X., Peng, M., & Zhao, D. (2009). Capacity performance of amplify-and-forward MIMO relay with transmit antenna selection and maximal-ratio combining. In Proceeding of the IEEE Global Telecommunications Conference, GLOBECOM., pp. 1–6.

  6. Chuberre, N., Courseille, O., Laine, P., Roullet, L., Quignon, T., & Tatard, M. (2008). Hybrid satellite and terrestrial infrastructure for mobile broadcast services delivery: An outlook to the unlimited mobile TV system performance. International Journal of Satellite Communications and Networking, 26(5), 405–426.

    Article  Google Scholar 

  7. Farhadi, G., & Beaulieu, N. (2008). Ergodic capacity of multi-hop wireless relaying systems in rayleigh fading. In Proceeding of the IEEE Global Telecommunications Conference, GLOBECOM., pp. 1–6.

  8. Fontán, F., Vazquez-Castro, M., Cabado, C., Garcia, J., & Kubista, E. (2001). Statistical modeling of the LMS channel. IEEE Transactions on Vehicular Technology, 50(6), 1549–1567.

    Article  Google Scholar 

  9. Genc, V., Murphy, S., Yu, Y., & Murphy, J. (2008). IEEE 802.16 j relay-based wireless access networks: An overview. IEEE Wireless Communications, 15(5), 56–63.

    Article  Google Scholar 

  10. Giambene, G., & Miorandi, D. (2005). A simulation study of scalable TCP and highspeed TCP in geostationary satellite networks. Telecommunication Systems, 30(4), 297–320.

    Article  Google Scholar 

  11. Iqbal, A., & Ahmed, K. (2011). A hybrid satellite-terrestrial cooperative network over non identically distributed fading channels. Journal of Communications, 6(7), 581–589.

    Article  Google Scholar 

  12. Kota, S., Giambene, G., & Kim, S. (2011). Satellite component of NGN: Integrated and hybrid networks. International Journal of Satellite Communications and Networking, 29(3), 191–208.

    Article  Google Scholar 

  13. Labrador, Y., Karimi, M., Pan, D., & Miller, J. (2009). An approach to cooperative satellite communications in 4G mobile systems. Journal of Communications, 4(10), 815–826.

    Article  Google Scholar 

  14. Laneman, J., Tse, D., & Wornell, G. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  Google Scholar 

  15. Lee, S., Lee, S., Kim, K., & Seo, J. (2007). Personal and mobile satellite DMB services in korea. IEEE Transactions on Broadcasting, 53(1), 179–187.

    Article  Google Scholar 

  16. Lo, T. (1999) Maximum ratio transmission. In: IEEE International Conference on Communications, ICC’99., (vol. 2, pp. 1310–1314). IEEE.

  17. Luo, H., Ma, Y., & Evans, B. (2009) A spectral efficient decode-and-forward relaying scheme for satellite broadcast networks. In: Proceeding of the International Workshop on Satellite and Space Communications, IWSSC., pp. 252–256.

  18. Morosi, S., Del Re, E., Jayousi, S., & Suffritti, R. (2009) Hybrid satellite/terrestrial cooperative relaying strategies for DVB-SH based communication systems. In Proceeding of the European Wireless Conference, EW, pp. 240–244.

  19. Perez-Neira, A., Ibars, C., Serra, J., del Coso, A., Gomez, J., & Caus, M. (2008) MIMO applicability to satellite networks. In Proceeding of the 10th International Workshop on Signal Processing for Space Communications, SPSC, pp. 1–9.

  20. Petrovic, I., Stefanovic, M., Spalevic, P., Panic, S., & Stefanovic, D. (2013) Outage analysis of selection diversity over Rayleigh fading channels with multiple co-channel interferers. Telecommunication Systems, 52(1), 39–50.

  21. Pollock, T., Abhayapala, T., & Kennedy, R. (2003). Introducing space into MIMO capacity calculations. Telecommunication Systems, 24(2), 415–436.

    Article  Google Scholar 

  22. Proakis, J. (2001). Digital Communications (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  23. Ryzhik, I., Jeffrey, A., & Zwillinger, D. (2007). Table of integrals, series and products. Waltham, MA: Academic Press.

    Google Scholar 

  24. Simon, M., & Alouini, M. (2005). Digital communication over fading channels. Hoboken, NJ: Wiley.

    Google Scholar 

  25. Warty, C. (2010) Cooperative communication for multiple satellite network. In Proceeding of the IEEE Aerospace Conference, pp. 1–7.

  26. Yang, L., & Chen, H. (2008). Error probability of digital communications using relay diversity over Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 7(5), 1806–1811.

    Article  Google Scholar 

Download references

Acknowledgments

The first author would like to thank the Higher Education Commission (HEC) Pakistan for providing funds for his higher studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Iqbal.

Appendices

Appendix 1: Proof of Theorem I

It is known that the sum of \(N\) independent squared Rice random variables follow non-central chi square distribution with \(N\) degree of freedom. The PDF expression given in (1) and the PDF of \(\gamma _{rd} \) is expressed in (2). The end-to-end PDF of the proposed system with independent and non-identical fading distributions can be derived by using [26]

$$\begin{aligned} f_{\gamma _r}(\gamma )=\int _{\gamma }^{\infty }\frac{z^2}{(z-\gamma )^2}f_{\gamma _{\text {sr}}}\left( \frac{\gamma z}{z-\gamma }\right) f_{\gamma _r}(z)dz \end{aligned}$$
(33)

After carrying out some variable transformation, (33) can be written as

$$\begin{aligned} f_{\gamma _r}(\gamma )&= \frac{1}{\left( 2b_o\bar{\gamma }_{\text {sr}}\right) ^{N_r }\varGamma \left( N_r\right) }\left( \frac{2b_o m_o}{2b_om_o+\varOmega }\right) ^{N_rm_o }\frac{1}{\varGamma \left( m N_t\right) } \nonumber \\&\quad \times \left( \frac{m}{\bar{\gamma }_{\text {rd}}}\right) ^{m N_t}\exp \left[ -\left( \frac{1}{2b_o\bar{\gamma }_{\text {sr}}}+\frac{m}{\bar{\gamma }_{\text {rd}}}\right) \gamma \right] \gamma ^{N_r-1} \nonumber \\&\quad \times \int _0^{\infty }\left( 1+\frac{\gamma }{z}\right) ^{m N_t+N_r}z^{m N_t-1} \nonumber \\&\quad \times \exp \left[ -\left( \frac{\gamma ^2}{2b_o\bar{\gamma }_{\text {sr}}z}+\frac{m z}{\bar{\gamma }_{\text {rd}}}\right) \right] \nonumber \\&\quad \times \,_1F_1\left( N_rm_0,N_r,\frac{\varOmega \gamma (z+\gamma ) }{2b_o\bar{\gamma }_{\text {sr}}z\left( 2b_o m_o+\varOmega \right) }\right) dz\nonumber \\ \end{aligned}$$
(34)

Now substituting \({}_1F_1(\cdot ,\cdot ,\cdot )\) with a series expression by using [23, eq.(9.14.1)], (34) can be written as

$$\begin{aligned} f_{\gamma _r}(\gamma )\!&= \!\frac{1}{\left( 2b_o{\bar{\gamma }}_{\text {sr}}\right) ^{N_r }\varGamma \left( N_r\right) }\left( \frac{2b_o m_o}{2b_o m_o+\varOmega }\right) ^{N_rm_o }\frac{1}{\varGamma \left( m N_t\right) } \nonumber \\&\quad \times \left( \frac{m}{\bar{\gamma }_{\text {rd}}}\right) ^{m N_t} \exp \left[ -\left( \frac{1}{2b_o\bar{\gamma }_{\text {sr}}}+\frac{m}{\bar{\gamma }_{\text {rd}}}\right) \gamma \right] \sum _{i=0}^{\infty } \frac{1}{i!} \nonumber \\&\quad \times \frac{\varGamma \left( N_rm_o+i\right) \varGamma \left( N_r\right) }{\varGamma \left( N_r m_o\right) \varGamma \left( N_r+i\right) }\left( \frac{\varOmega }{2b_o\bar{\gamma }_{\text {sr}}\left( 2b_o m_o+\varOmega \right) }\right) ^i \nonumber \\&\quad \times \gamma ^{N_r+x-1}\int _0^{\infty }\left( 1+\frac{\gamma }{z}\right) ^{m N_t+N_r+x}z^{m N_t-1} \nonumber \\&\quad \times \exp \left[ -\left( \frac{\gamma ^2}{2b_o\bar{\gamma }_{\text {sr}}z}+\frac{m z}{\bar{\gamma }_{\text {rd}}}\right) \right] dz \end{aligned}$$
(35)

The term \(\left( 1+\frac{\gamma }{z}\right) ^{m N_t+N_r+i}\) can be expanded according to [23, eq.(1.111)], we can reach

$$\begin{aligned} f_{\gamma _r}(\gamma )&= \frac{1}{\left( 2b_o\bar{\gamma }_{\text {sr}}\right) ^{N_r }\varGamma \left( N_r\right) }\left( \frac{2b_o m_o}{2b_o m_o+\varOmega }\right) ^{N_rm_o }\frac{1}{\varGamma \left( m N_t\right) } \nonumber \\&\quad \times \left( \frac{m}{\bar{\gamma }_{\text {rd}}}\right) ^{m N_t}\exp \left[ -\left( \frac{1}{2b_o\bar{\gamma }_{\text {sr}}}+\frac{m}{\bar{\gamma }_{\text {rd}}}\right) \gamma \right] \sum _{i=0}^{\infty } \frac{1}{i!} \nonumber \\&\quad \times \frac{\varGamma \left( N_rm_o\!+\!i\right) \varGamma \left( N_r\right) }{\varGamma \left( N_r m_o\right) \varGamma \left( N_r+i\right) }\left( \frac{\varOmega \text { }}{2b_o\bar{\gamma }_{\text {sr}}\left( 2b_o m_o\!+\!\varOmega \right) }\right) ^i \nonumber \\&\quad \times \sum _{j=0}^{m N_t+N_r+i} \left( {\begin{array}{c}m N_t+N_r+i\\ j\end{array}}\right) \gamma ^{N_r+i+j-1} \nonumber \\&\quad \times \int _0^{\infty }z^{m N_t-y-1}\exp \left[ -\left( \frac{\gamma ^2}{2b_o\bar{\gamma }_{\text {sr}}z}+\frac{m z}{\bar{\gamma }_{\text {rd}}}\right) \right] dz\nonumber \\ \end{aligned}$$
(36)

Now with the help of [23, eq.(3.471.9)], the combined PDF, \(f_{\gamma _{r}}(\gamma )\), can be shown as (10).

Appendix 2: Derivation of relay path CDF \(F_{\gamma _r}(\gamma )\)

The PDF of SNR per symbol of \(S\rightarrow R\) link is given in (1) and the CDF of \(R\rightarrow D\) link for integer values of \(m\) is given by

$$\begin{aligned} f_{\gamma _{\text {rd}}}(\gamma )= 1-\exp \left( -\frac{m \gamma _{\text {rd}}}{\bar{\gamma }_{\text {rd}}}\right) \sum _{n=0}^{m N_t-1}\frac{1}{n!}\left( \frac{m \gamma _{\text {rd}}}{\bar{\gamma }_{\text {rd}}}\right) ^n \end{aligned}$$
(37)

Then, the CDF of the end-to-end path can be calculated with the help of (9) as

$$\begin{aligned} F_{\gamma _r}(\gamma )&=\Pr \left( \gamma _r\le \gamma \right) =\Pr \left( \frac{\gamma _{\text {sr}}\gamma _{\text {rd}}}{\gamma _{\text {sr}}+\gamma _{\text {rd}}}\le \gamma \right) \nonumber \\&\quad =\int _0^{\gamma }\Pr \left( \gamma _{\text {rd}}\ge \frac{\gamma \gamma _{\text {sr}}}{\gamma _{\text {sr}}-\gamma }\right) f_{\gamma _{\text {sr}}}\left( \gamma _{\text {sr}}\right) d\gamma _{\text {sr}}\nonumber \\&\qquad + \int _{\gamma }^{\infty }\Pr \left( \gamma _{\text {rd}}\le \frac{\gamma \gamma _{\text {sr}}}{\gamma _{\text {sr}} -\gamma }\right) f_{\gamma _{\text {sr}}}\left( \gamma _{\text {sr}}\right) d\gamma _{\text {sr}}\nonumber \\&\quad = 1-\int _{\gamma }^{\infty }\Pr \left( \gamma _{\text {rd}}\ge \frac{\gamma \gamma _{\text {sr}}}{\gamma _{\text {sr}}-\gamma }\right) f_{\gamma _{\text {sr}}}\left( \gamma _{\text {sr}}\right) d\gamma _{\text {sr}}\nonumber \\&\quad =1-\frac{1}{\left( 2b_o\bar{\gamma }_{\text {sr}}\right) {}^{N_r }\varGamma \left( N_r\right) }\left( \frac{2b_o m_o}{2b_o m_o+\varOmega }\right) ^{N_rm_o} \nonumber \\&\quad \quad \times \sum _{n=0}^{m N_t-1}\frac{1}{n!}\left( \frac{m }{\bar{\gamma }_{\text {rd}}}\right) ^n \int _{\gamma }^{\infty }\gamma _{\text {sr}}^{N_r-1} \nonumber \\&\quad \quad \times \exp \left[ -\left( \frac{\gamma _{\text {sr}}}{2b_o\bar{\gamma }_{\text {sr}}\text { }}+\frac{m\gamma \gamma _{\text {sr}}}{\bar{\gamma }_{\text {rd}}\left( \gamma _{\text {sr}}-\gamma \right) }\right) \right] \nonumber \\&\quad \quad \times \left( \frac{\gamma \text { }\gamma _{\text {sr}}}{\gamma _{\text {sr}}-\gamma }\right) ^n\,_1F_1\left( N_rm_o,N,\varOmega \lambda \right) d\gamma _{\text {sr}} \end{aligned}$$
(38)

After integral substitution \(x=\gamma _{sr}-\gamma \) and applying [23, eq.(9.14.1)] and [23, eq.(1.111)] we can reach

$$\begin{aligned} F_{\gamma _r}(\gamma )&=1-\frac{1}{\left( 2b_o\bar{\gamma }_{\text {sr}}\right) ^{N_r }}\left( \frac{2b_o m_o}{2b_o m_o+\varOmega }\right) ^{N_rm_o}\sum _{n=0}^{m N_t-1} \frac{1}{n!} \nonumber \\&\quad \times \left( \frac{m }{\bar{\gamma }_{\text {rd}}}\right) ^n\exp \left[ -\left( \frac{\gamma }{2b_o\bar{\gamma }_{\text {sr}}\text { }}+\frac{m \gamma }{\bar{\gamma }_{\text {rd}}}\right) \right] \sum _{i=0}^{\infty } \frac{1}{i!}\nonumber \\&\quad \times \frac{\varGamma \left( N_rm_o+i\right) }{\varGamma \left( N_r m_o\right) \varGamma \left( N_r+i\right) } \left( \frac{ \varOmega }{2b_o \bar{\gamma }_{\text {sr}}\left( 2b_om_o+\varOmega \right) }\right) ^i \nonumber \\&\quad \times \sum _{j=0}^{N_r+n+i-1} \left( {\begin{array}{c}N_r+n+i-1\\ j\end{array}}\right) \gamma ^{n+j} \nonumber \\&\quad \times \int _0^{\infty }\exp \left[ -\left( \frac{x}{2b_o\bar{\gamma }_{\text {sr}}}+\frac{m \gamma ^2}{x \bar{\gamma }_{\text {rd}}}\right) \right] x^{N_r+i-j-1}dx \nonumber \\ \end{aligned}$$
(39)

Now by using [23, Eq. (3.471.9)] and solving the above integral, we can get the closed form expression of CDF as given in (13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Ahmed, K.M. Impact of MIMO enabled relay on the performance of a hybrid satellite-terrestrial system. Telecommun Syst 58, 17–31 (2015). https://doi.org/10.1007/s11235-014-9864-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9864-9

Keywords

Navigation