Skip to main content

Advertisement

Log in

Redundancy, diversity, and connectivity to achieve multilevel network resilience, survivability, and disruption tolerance invited paper

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Communication networks are constructed as a multilevel stack of infrastructure, protocols, and mechanisms: links and nodes, topology, routing paths, interconnected realms (ASs), end-to-end transport, and application interaction. The resilience of each one of these levels provides a foundation for the next level to achieve an overall goal of a resilient, survivable, disruption-tolerant, and dependable Future Internet. This paper concentrates on three critical resilience disciplines and the corresponding mechanisms to achieve multilevel resilience: redundancy for fault tolerance, diversity for survivability, and connectivity for disruption tolerance. Cross-layering and the mechanisms at each level are described, including richly connected topologies, multipath diverse routing, and disruption-tolerant end-to-end transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A roadmap for cybersecurity research (2009) (Technical Report) Department of Homeland Security (DHS).

  2. Afek, Y., & Gafni, E. (1988). End-to-end communication in unreliable networks. In Proceedings of the 7th annual ACM symposium on the principles of distributed computing, Toronto, Canada (pp. 131–148).

    Google Scholar 

  3. Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11–33.

    Article  Google Scholar 

  4. Bhattacharjee, B., Calvert, K., Griffioen, J., Spring, N., & Sterbenz, J. P. G. (2006). Postmodern Internetwork Architecture (Technical Report ITTC-FY2006-TR-45030-01). University of Kansas, Lawrence, KS.

  5. Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, B., Scott, K., & Weiss, H. (2003). Delay-tolerant networking: an approach to interplanetary Internet. IEEE Communications Magazine, 41(6), 128–136.

    Article  Google Scholar 

  6. Carter, M. R., Howard, M. P., Owens, N., Register, D., Kennedy, J., Pecheux, K., & Newton, A. (2002). Effects of catastrophic events on transportation system management and operations, Howard Street tunnel fire, Baltimore City, Maryland, July 18, 2001 (Technical Report). U.S. Department of Transportation, ITS Joint Program Office, Washington DC.

  7. Çetinkaya, E. K., Broyles, D., Dandekar, A., Srinivasan, S., & Sterbenz, J. P. (2011). Modelling Communication Network Challenges for Future Internet Resilience, Survivability, and Disruption Tolerance: A Simulation-Based Approach. Springer Telecommunication Systems, 1–16. Published online: 21 September 2011. doi:10.1007/s11235-011-9575-4.

  8. Çetinkaya, E. K., Broyles, D., Dandekar, A., Srinivasan, S., & Sterbenz, J. P. G. (2010). A comprehensive framework to simulate network attacks and challenges. In Proceedings of the 2nd IEEE/IFIP international workshop on Reliable Networks Design and Modeling (RNDM), Moscow (pp. 538–544).

    Google Scholar 

  9. Cheng, Y., Todd Gardner, M., Li, J., May, R., Medhi, D., & Sterbenz, J. P. G. (2014). Optimised heuristics for a geodiverse routing protocol. In The 10th IEEE/IFIP international conference on Design of Reliable Communication Networks (DRCN), Ghent, Belgium.

    Google Scholar 

  10. Clark, D. D. (1995). Protocol design and performance. Tutorial notes. IEEE INFOCOM.

  11. Cowie, J. H., Ogielski, A. T., Premore, B., Smith, E. A., & Underwood, T. (2003). Impact of the 2003 Blackouts on Internet Communications. Preliminary report, Renesys Corporation (updated March 1, 2004).

  12. Demeester, P., Gryseels, M., Autenrieth, A., Brianza, C., Castagna, L., Signorelli, G., Clemenfe, R., Ravera, M., Jajszczyk, A., Janukowicz, D., Doorselaere, K. V., & Harada, Y. (1999). Resilience in multilayer networks. IEEE Communications Magazine, 37(8), 70–76.

    Article  Google Scholar 

  13. Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., Longstaff, T., & Mead, N. R. (1999). Survivable network systems: An emerging discipline (Technical Report CMU/SEI-97-TR-013). Software Engineering Institute, Carnegie Mellon University, PA.

  14. European information society (2010). http://ec.europa.eu/information_society/policy/nis/strategy/activities/ciip/index_en.htm.

  15. Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In SIGCOMM’03: proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications (pp. 27–34). New York: ACM.

    Chapter  Google Scholar 

  16. Fall, K., & Farrell, S. (2008). DTN: an architectural retrospective. IEEE Journal on Selected Areas in Communications, 26(5), 828–836.

    Article  Google Scholar 

  17. Feldmeier, D. (1993). An overview of the TP++ transport protocol project. In A. N. Tantawy (Ed.), High performance networks: frontiers and experience, Kluwer international series in engineering and computer science (Vol. 238). Boston: Kluwer Academic. Chap. 8.

    Google Scholar 

  18. Frank, H., & Frisch, I. (1970). Analysis and design of survivable networks. IEEE Transactions on Communication Technology, 18(5), 501–519.

    Article  Google Scholar 

  19. Goodman, S., & Lin, H. (2007). Toward a safer and more secure cyberspace. Washington: National Academies Press.

    Google Scholar 

  20. Grover, W. D., & Stamatelakis, D. (1998). Cycle-oriented distributed preconfiguration: ring-like speed with mesh-like capacity for self-planning network restoration. In Proceeding of the IEEE International Conference on Communications (ICC) (Vol. 1, pp. 537–543).

    Google Scholar 

  21. Heimlicher, S., Karaliopoulos, M., Levy, H., & Spyropoulos, T. (2009). On leveraging partial paths in partially-connected networks. In Proceeding of the 28th IEEE Conference on Computer Communications (INFOCOM), Rio de Janeiro, Brazil.

    Google Scholar 

  22. Information Security (1996). Computer Hacker Information Available on the Internet (Technical Report T-AIMD-96-108). United States General Accounting Office. http://www.fas.org/irp/gao/aimd-96-108.htm.

  23. Jabbar, A. (2010). A framework to quantify network resilience and survivability. Ph.D. thesis, University of Kansas, Lawrence, KS.

  24. Jabbar, A., Narra, H., & Sterbenz, J. P. G. (2011). An approach to quantifying resilience in mobile ad hoc networks. In Proceedings of the 8th IEEE international workshop on the Design of Reliable Communication Networks (DRCN), Krakow, Poland (pp. 140–147).

    Google Scholar 

  25. Jabbar, A., Raman, B., Frost, V. S., & Sterbenz, J. P. G. (2008). Weather disruption-tolerant self-optimising millimeter mesh networks. In Lecture notes in computer science: Vol. 5343. Proceedings of IWSOS: third international IFIP/IEEE workshop on self-organizing systems (pp. 242–255). Berlin: Springer.

    Google Scholar 

  26. Jabbar, A., Rohrer, J. P., Frost, V. S., & Sterbenz, J. P. G. (2011). Survivable millimeter-wave mesh networks. Computer Communications, 34(16), 1942–1955.

    Google Scholar 

  27. Jabbar, A., Rohrer, J. P., Oberthaler, A., Çetinkaya, E. K., Frost, V., & Sterbenz, J. P. G. (2009). Performance comparison of weather disruption-tolerant cross-layer routing algorithms. In Proc. IEEE INFOCOM 2009. The 28th conference on computer communications (pp. 1143–1151).

    Chapter  Google Scholar 

  28. Khabbaz, M. J., Assi, C. M., & Fawaz, W. F. (2011). Disruption-tolerant networking: a comprehensive survey on recent developments and persisting challenges. IEEE Communications Surveys and Tutorials. doi:10.1109/SURV.2011.041911.00093.

    Google Scholar 

  29. Krishnan, R., Sterbenz, J. P. G., Eddy, W. M., Partridge, C., & Allman, M. (2004). Explicit transport error notification (ETEN) for error-prone wireless and satellite networks. Computer Networks, 46(3), 343–362.

    Article  Google Scholar 

  30. Laprie, J. C. (1994). Dependability: Basic concepts and terminology. Draft, IFIP Working Group 10.4—Dependable Computing and Fault Tolerance.

  31. Liscouski, B., & Elliot, W. J. (2004). Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations (Technical Report). U.S., Canada Power System Outage Task Force.

  32. Lyons, R., & Vanderkulk, W. (1962). The use of triple-modular redundancy to improve computer reliability. IBM Journal of Research and Development, 6(2), 200–209.

    Article  Google Scholar 

  33. Medhi, D., & Tipper, D. (2000). Multi-layered network survivability-models, analysis, architecture, framework and implementation: an overview. In Proceedings of the DARPA information survivability conference and exposition (DISCEX) (Vol. 1, pp. 173–186).

    Chapter  Google Scholar 

  34. Menth, M., Hartmann, M., Martin, R., Cicic, T., & Kvalbein, A. (2010). Loop-free alternates and not-via addresses: a proper combination for IP fast reroute? Computer Networks, 54(8), 1300–1315.

    Article  Google Scholar 

  35. Meyer, J. F. (1980). On evaluating the performability of degradable computing systems. IEEE Transactions on Computers, 100(29), 720–731.

    Article  Google Scholar 

  36. Meyer, J. F. (1992). Performability: a retrospective and some pointers to the future. Performance Evaluation, 14(3–4), 139–156.

    Article  Google Scholar 

  37. Meyer, J. F. (1995). Performability evaluation: where it is and what lies ahead. In Proceedings of the IEEE International Computer Performance and Dependability Symposium (IPDS) (pp. 334–343).

    Google Scholar 

  38. Meyer, J. F. (2009). Defining and evaluating resilience: a performability perspective. In Proceedings of the international workshop on Performability Modeling of Computer and Communication Systems (PMCCS), Eger, Hungary.

    Google Scholar 

  39. Molisz, W., & Rak, J. (2006). End-to-end service survivability under attacks on networks. Journal of Telecommunications and Information Technology, 3, 19–26.

    Google Scholar 

  40. Narra, H., Çetinkaya, E. K., & Sterbenz, J. P. G. (2012). Performance analysis of AeroRP with ground station advertisements. In ACM MobiHoc workshop on airborne networks and communications, Hilton Head Island, SC (pp. 43–47).

    Google Scholar 

  41. Nicol, D. M., Sanders, W. H., & Trivedi, K. S. (2004). Model-based evaluation: from dependability to security. IEEE Transactions on Dependable and Secure Computing, 01(1), 48–65.

    Article  Google Scholar 

  42. Nussbaumer, J., Patel, B. V., Schaffa, F., & Sterbenz, J. P. G. (1995). Networking requirements for interactive video on demand. IEEE Journal on Selected Areas in Communications, 13, 779–787.

    Article  Google Scholar 

  43. Peters, K., Jabbar, A., Çetinkaya, E. K., & Sterbenz, J. P. (2011). A geographical routing protocol for highly-dynamic aeronautical networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Cancun, Mexico (pp. 492–497).

    Google Scholar 

  44. Protecting America’s infrastructures (1997). Report, President’s Commission on Critical Infrastructure Protection.

  45. Rak, J. (2010). k-Penalty: a novel approach to find k-disjoint paths with differentiated path costs. IEEE Communications Letters, 14(4), 354–356.

    Article  Google Scholar 

  46. Rak, J. (2012). Fast service recovery under shared protection in WDM networks. Journal of Lightwave Technology, 30(1), 84–95.

    Article  Google Scholar 

  47. Rak, J., & Walkowiak, K. (2011). Reliable anycast and unicast routing: protection against attacks. Springer Telecommunication Systems, 1–18. Published online: 1 September 2011. doi:10.1007/s11235-011-9583-4.

  48. Rohrer, J. P. (2011). End-to-end resilience mechanisms for network transport protocols. Ph.D. thesis, University of Kansas, Lawrence, KS.

  49. Rohrer, J. P., Çetinkaya, E. K., Narra, H., Broyles, D., Peters, K., & Sterbenz, J. P. G. (2011). AeroRP performance in highly-dynamic airborne networks using 3D Gauss–Markov mobility model. In Proceedings of the IEEE Military Communications Conference (MILCOM), Baltimore, MD (pp. 834–841).

    Google Scholar 

  50. Rohrer, J. P., Jabbar, A., Çetinkaya, E. K., Perrins, E., & Sterbenz, J. P. (2011). Highly-dynamic cross-layered aeronautical network architecture. IEEE Transactions on Aerospace and Electronic Systems, 47(4), 2742–2765.

    Article  Google Scholar 

  51. Rohrer, J. P., Jabbar, A., Çetinkaya, E. K., & Sterbenz, J. P. (2010). Airborne telemetry networks: challenges and solutions in the ANTP suite. In Proceedings of the IEEE Military Communications Conference (MILCOM), San Jose, CA (pp. 74–79).

    Google Scholar 

  52. Rohrer, J. P., Jabbar, A., Perrins, E., & Sterbenz, J. P. G. (2008). Cross-layer architectural framework for highly-mobile multihop airborne telemetry networks. In Proceedings of the IEEE Military Communications Conference (MILCOM), San Diego, CA, USA (pp. 1–9).

    Google Scholar 

  53. Rohrer, J. P., Jabbar, A., & Sterbenz, J. P. G. (2012, to appear). Path diversification. Springer Telecommunication Systems.

  54. Rohrer, J. P., Jabbar, A., & Sterbenz, J. P. G. (2009). Path diversification: a multipath resilience mechanism. In Proceedings of the IEEE 7th international workshop on the Design of Reliable Communication Networks (DRCN), Washington, DC (pp. 343–351).

    Google Scholar 

  55. Rohrer, J. P., Naidu, R., & Sterbenz, J. P. G. (2009). Multipath at the transport layer: an end-to-end resilience mechanism. In Proceedings of the IEEE/IFIP international workshop on Reliable Networks Design and Modeling (RNDM), St. Petersburg, Russia (pp. 1–7).

    Google Scholar 

  56. Rohrer, J. P., & Sterbenz, J. P. G. (2011). Predicting topology survivability using path diversity. In Proceedings of the IEEE/IFIP international workshop on Reliable Networks Design and Modeling (RNDM), Budapest (pp. 95–101).

    Google Scholar 

  57. Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984). End-to-end arguments in system design. ACM Transactions on Computer Systems, 2(4), 277–288.

    Article  Google Scholar 

  58. Schneider, F. (1999). Trust in cyberspace. Washington: National Academies Press.

    Google Scholar 

  59. Scott, K., & Burleigh, S. (2007). Bundle Protocol Specification. RFC 5050 (Experimental). http://www.ietf.org/rfc/rfc5050.txt.

  60. Sterbenz, J. P., Çetinkaya, E. K., Hameed, M. A., Jabbar, A., Shi, Q., & Rohrer, J. P. (2011, invited paper). Evaluation of Network Resilience, Survivability, and Disruption Tolerance: Analysis, Topology Generation, Simulation, and Experimentation. Springer Telecommunication Systems, 1–32. Published online: 7 December 2011. doi:10.1007/s11235-011-9573-6.

  61. Sterbenz, J. P., Saxena, T., & Krishnan, R. (2002). Latency-Aware Information Access with User-Directed Fetch Behaviour for Weakly-Connected Mobile Wireless Clients (Technical Report 8340). BBN Technologies Cambridge, MA.

  62. Sterbenz, J. P. G., Hutchison, D., & Resilinets (2006). Multilevel resilient and survivable networking initiative wiki. http://wiki.ittc.ku.edu/resilinets.

  63. Sterbenz, J. P. G., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. (2010). Resilience and survivability in communication networks: strategies, principles, and survey of disciplines. Computer Networks, 54(8), 1245–1265.

    Article  Google Scholar 

  64. Sterbenz, J. P. G., Krishnan, R., Hain, R. R., Jackson, A. W., Levin, D., Ramanathan, R., & Zao, J. (2002). Survivable mobile wireless networks: issues, challenges, and research directions. In Proceedings of the 3rd ACM workshop on Wireless Security (WiSE), Atlanta, GA (pp. 31–40).

    Chapter  Google Scholar 

  65. Sterbenz, J. P. G., & Touch, J. D. (2001). High-speed networking: a systematic approach to high-bandwidth low-latency communication (1st ed.). New York: Wiley.

    Google Scholar 

  66. Strand, J., Chiu, A., & Tkach, R. (2001). Issues for routing in the optical layer. IEEE Communications Magazine, 39(2), 81–87.

    Article  Google Scholar 

  67. Styron, H. C. (2001). CSX tunnel fire: Baltimore, MD. (US Fire Administration Technical Report USFA-TR-140). Federal Emergency Management Administration, Emmitsburg, MD.

  68. Swartz, M., & Wallace, D. (1993). Effects of frame rate and resolution reduction on human performance. In IS&T’s 46th annual conference, Munich.

    Google Scholar 

  69. Tchakountio, F., & Ramanathan, R. (2004). Anticipatory routing for highly mobile endpoints. In Proceedings of the 6th IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), Washington, DC (pp. 94–101).

    Google Scholar 

  70. Trivedi, K., Kim, D., Roy, A., & Medhi, D. (2009). Dependability and security models. In Proceedings of the international workshop of Design of Reliable Communication Networks (DRCN) (pp. 11–20). New York: IEEE Press.

    Google Scholar 

  71. UK resilience homepage (2010). http://www.cabinetoffice.gov.uk/ukresilience.aspx.

  72. Zhao, W., Ammar, M., & Zegura, E. (2004). A message ferrying approach for data delivery in sparse mobile ad hoc networks. In Proceedings of the 5th ACM international symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Tokyo (pp. 187–198).

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the ResiliNets research group at the University of Kansas and Lancaster University, as well as members of the EU ResumeNet project for discussions on, and contributions to aspects of this work. We would like to thank Jacek Rak for inviting this paper based on the RNDM 2011 tutorial given by the primary author of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. G. Sterbenz.

Additional information

This research was supported in part by the National Science Foundation FIND (Future Internet Design) Program under grant CNS-0626918 (Postmodern Internet Architecture), by NSF grant CNS-1050226 (Multilayer Network Resilience Analysis and Experimentation on GENI), and the European Commission FIRE (Future Internet Research and Experimentation Programme) under grant FP7-224619 (ResumeNet).

Research performed while Egemen K. Çetinkaya, Abdul Jabbar, Justin P. Rohrer, Marcus Schöller, Paul Smith were at The University of Kansas and Lancaster University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterbenz, J.P.G., Hutchison, D., Çetinkaya, E.K. et al. Redundancy, diversity, and connectivity to achieve multilevel network resilience, survivability, and disruption tolerance invited paper . Telecommun Syst 56, 17–31 (2014). https://doi.org/10.1007/s11235-013-9816-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9816-9

Keywords

Navigation