Skip to main content
Log in

Analyzing the capacity of wireless ad hoc networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper we develop analytical closed form expression for the capacity of a wireless ad hoc network. First, for the general case when nodes can adapt their communication rates to the link quality, a proper formulation for the total network capacity is presented based on the cumulative distribution function (CDF) of the signal to interference power ratio (SIR). Then, a closed form expression for this CDF is analytically derived. This closed form is further studied by fitting it to a normal distribution. Afterwards, the capacity of the network is investigated. By examining the effect of the outage threshold, it is shown that in order to obtain a higher capacity, one may use simple non-adaptive transceivers with higher threshold on the received SIR. These results are obtained by conducting analytical and simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  2. Trivino, A., Garcia, J., Casilari, E., & Gonzalez, F. (2008). Applications of path duration study in multihop ad hoc networks. Telecommunications Systems, 38(1–2), 3–8.

    Article  Google Scholar 

  3. Toumpis, S., & Goldsmith, A. (2003). Capacity regions for wireless ad hoc networks. IEEE Transactions on Wireless Communications, 24(5), 736–748.

    Article  Google Scholar 

  4. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46, 388–404.

    Article  Google Scholar 

  5. Grossglauser, M., & Tse, D. (2002). Mobility increases the capacity of ad-hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4), 477–486.

    Article  Google Scholar 

  6. Lozano, A. C., Kulkarni, S. R., & Viswanath, P. (2007). Throughput scaling in wireless networks with restricted mobility. IEEE Transactions on Wireless Communications, 6(2), 670–679.

    Article  Google Scholar 

  7. Xie, L.-L., & Kumar, P. R. (2004). A network information theory for wireless communication: scaling laws and optimal operation. IEEE Transactions on Information Theory, 50(5), 748–767.

    Article  Google Scholar 

  8. Gupta, P., & Kumar, P. R. (2003). Towards an information theory of large networks: an achievable rate region. IEEE Transactions on Information Theory, 49, 1877–1894.

    Article  Google Scholar 

  9. Jovicic, A., Viswanath, P., & Kulkarni, S. (2004). Upper bounds to transport capacity of wireless networks. IEEE Transactions on Information Theory, 50(11), 2555–2565.

    Article  Google Scholar 

  10. Leveque, O., & Teletar, I. E. (2005). Information-theoretic upper bounds on the capacity of large extended ad hoc wireless networks. IEEE Transactions on Information Theory, 51(3), 858–865.

    Article  Google Scholar 

  11. Franceschetti, M., Dousse, O., Tse, D., & Thiran, P. (2007). Closing the gap in the capacity of wireless networks via percolation theory. IEEE Transactions on Information Theory, 53(3), 1009–1018.

    Article  Google Scholar 

  12. Baccelli, F., & Błaszczyszyn, B. (2009). Stochastic geometry and wireless networks. vol. 1: theory. Paris: INRIA.

    Google Scholar 

  13. Haenggi, M., Andrews, J. G., Baccelli, F., Dousse, O., & Franceschetti, M. (2009). Stochastic geometry and random graphs for the analysis and design of wireless networks. Journal on Selected Areas in Communications, 27(7).

  14. Haenggi, M., & Ganti, R. K. (2008). Interference in large wireless networks. Foundations and Trends® in Networking, 3(2), 127–248.

    Article  Google Scholar 

  15. Rezagah, R. E., & Mohammadi, A. (2006). The capacity of wireless ad hoc networks using statistical techniques. In Proceedings of IEEE ICC 2006—IEEE international conference on communications, Istanbul, Turkey (Vol. 1, pp. 337–342).

    Google Scholar 

  16. Rezagah, R. E., & Mohammadi, A. (2006). Characterization of the scalability of wireless ad hoc networks under channel limitations. In Proceedings of IEEE IIT 2006—innovations in information technology (pp. 1–5).

    Google Scholar 

  17. Weber, S., Yang, X., Andrews, J. G., & de Veciana, G. (2005). Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Transactions on Information Theory, 51(12), 4091–4102.

    Article  Google Scholar 

  18. Weber, S., Andrews, J. G., de Yang, X., & Veciana, G. (2007). Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Transactions on Information Theory, 53(8), 2799–2814.

    Article  Google Scholar 

  19. Jafari, A., & Mohammadi, A. (2009). A cross layer approach based on queuing and adaptive modulation for MIMO systems. Telecommunications Systems, 42, 85–96.

    Article  Google Scholar 

  20. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes (4th ed.). New York: McGraw-Hill Higher Education.

    Google Scholar 

  21. Rappaport, T. S. (2002). Wireless communications, principles and practice (2nd ed.). Englewood Cliffs: Prentice Hall PTR.

    Google Scholar 

  22. Sousa, E. S., & Silvester, J. A. (1990). Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. IEEE Journal on Selected Areas in Communications, 8(5), 762–771.

    Article  Google Scholar 

  23. Comaniciu, C., & Poor, H. V. (2006). On the capacity of mobile ad hoc networks with delay constraints. IEEE Transactions on Wireless Communications, 5(8), 2061–2071.

    Article  Google Scholar 

  24. Rezagah, R. E., & Mohammadi, A. (2009). The capacity estimation of wireless ad hoc networks in fading channels. IET Communications, 3(2), 293–302.

    Article  Google Scholar 

  25. Aboutorab, N., & Mohammadi, A. (2010). A cross-layer design of wireless IP systems using effective bandwidth and MQAM adaptive modulation. Telecommunications Systems, 46(4), 343–351.

    Article  Google Scholar 

  26. Tranter, W. H., Shanmugan, K. S., Rappaport, T. S., & Kosbar, K. L. (2004). Principles of communication system simulation with wireless applications. Englewood Cliffs: Prentice Hall PTR.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Mohammadi.

Appendix:  Estimating the mean and variance of the received SIR

Appendix:  Estimating the mean and variance of the received SIR

A Gaussian distribution is fully characterized by its mean and variance [20]. Therefore, in order to approximate the distribution of the SIR at the location with a Gaussian distribution, here its mean and variance are estimated.

According to Eq. (16), we can write:

$$\begin{aligned} \mbox{mean} \{ \mathit{SIR}_{dB} \} &= E \biggl\{ 10\log_{10} \biggl( \frac{1}{d^{\alpha}} \biggr) - I_{dB} \biggr\} \\ & = E \biggl\{ 10\log_{10} \biggl( \frac{1}{ d^{\alpha}} \biggr) \biggr\} - E \{ I_{dB} \} , \end{aligned}$$
(24)

where, E{x} is the expected value of the random variable x. Each term in the right-side of the above equation is calculated separately. The first and second terms are calculated using the probability density function (PDF) of d and I dB , respectively. These PDFs are the derivative of the corresponding cumulative distribution functions (CDFs) [20] which are given in Eqs. (3) and (15) respectively.

According to Eq. (3) we have:

$$ f_{d}(\rho ) = \frac{dF_{d}(\rho )}{d\rho} = \left \{ \begin{array} {l@{\quad}l} \frac{2\rho}{D^{2} - \varepsilon^{2}}, & \varepsilon \le \rho \le D \\ 0, & \mbox{otherwise}. \end{array} \right . $$
(25)

And, based on Eq. (15) we can write:

$$\begin{aligned} f_{I_{dB}} ( x ) &= \frac{dF_{I_{dB}} ( x )}{dx} \\ &\cong ( N - 1 ) \frac{ ( R^{2} - 10^{ - x / 5\alpha} )^{ ( N - 2 )}}{ ( R^{2} - \varepsilon^{2} )^{ ( N - 1 )}}\frac{ - d ( 10^{ - x / 5\alpha} )}{dx}, \\ &{-} 10\log_{10}R \le x \le - 10\log_{10}\varepsilon. \end{aligned}$$
(26)

Now, the first term in the right-side of Eq. (24) is calculated as follows:

$$\begin{aligned} E \biggl\{ 10\log_{10} \biggl( \frac{1}{ d^{\alpha}} \biggr) \biggr\} &= ( - 10\alpha )E \bigl\{ \log_{10} ( d ) \bigr\} \\ &= ( - 10\alpha )\int_{\varepsilon}^{D} \log_{10} ( d )f_{d} ( x )dx \\ & = \frac{2 ( - 10\alpha )}{\ln 10 \times ( D^{2} - \varepsilon^{2} )} \\ &\quad {}\times \biggl[ \frac{D^{2}\ln D}{2} - \frac{D^{2}}{4} - \frac{\varepsilon^{2}\ln \varepsilon}{2} + \frac{\varepsilon^{2}}{4} \biggr]. \end{aligned}$$
(27)

And, the second term of Eq. (24) is calculated as follows:

$$ E\left\{ I_{dB} \right\} = \int_{ - 10\log_{10}R}^{ - 10\log_{10}\varepsilon} x.f_{I_{dB}}(x)dx. $$
(28)

We define:

$$ y \triangleq = 10^{ - x / 5\alpha}. $$
(29)

Therefore:

$$\begin{aligned} &E \{ I_{dB} \} \\ &\quad = \int_{ - 10\log_{10}R}^{ - 10\log_{10}\varepsilon} x.f_{I_{dB}}(x)dx \\ &\quad =\int_{\varepsilon^{2}}^{R^{2}} \bigl( - 5\alpha \log_{10}(y) \bigr) ( N - 1 )\frac{ ( R^{2} - y )^{N - 2}}{ ( R^{2} - \varepsilon^{2} )^{N - 1}}dy \\ &\quad = \frac{ - 5\alpha ( N - 1 ) ( - 1 )^{N - 2}}{ ( R^{2} - \varepsilon^{2} )^{N - 1} ( \ln 10 )}\int_{\varepsilon^{2}}^{R^{2}} \bigl( \ln (y) \bigr) \bigl( R^{2} - y \bigr)^{N - 2}dy \\ &\quad = \frac{ - 5\alpha ( N - 1 ) ( - 1 )^{N - 2}}{ ( R^{2} - \varepsilon^{2} )^{N - 1} ( \ln 10 )} \\ &\quad {}\times\int_{\varepsilon^{2}}^{R^{2}} \ln (y)\left [ \sum_{k = 0}^{N - 2} \left \{ \left ( \begin{array} {c} N - 2\\ k \end{array} \right ) \bigl( - R^{2} \bigr)^{N - 2 - k}y^{k} \right \} \right ]dy \\ &\quad = \frac{ - 5\alpha ( N - 1 ) ( - 1 )^{N - 2}}{ ( R^{2} - \varepsilon^{2} )^{N - 1} ( \ln 10 )} \\ &\qquad {}\times \sum_{k = 0}^{N - 2} \left \{ \left ( \begin{array} {c} N - 2 \\ k \end{array} \right ) \bigl( - R^{2} \bigr)^{N - 2 - k} \biggl[ \int_{\varepsilon^{2}}^{R^{2}} \ln (y)y^{k}dy \biggr] \right \} \\ &\quad = \frac{ - 5\alpha ( N - 1 ) ( - 1 )^{N - 2}}{ ( R^{2} - \varepsilon^{2} )^{N - 1} ( \ln 10 )} \sum_{k = 0}^{N - 2} \biggl\{ \left ( \begin{array} {c} N - 2\\ k \end{array} \right ) \bigl( - R^{2} \bigr)^{N - 2 - k} \\ &\qquad {}\times \biggl[ \frac{R^{2k + 2}\ln R^{2}}{k + 1} - \frac{R^{2k + 2}}{ ( k + 1 )^{2}} \\ &\qquad {}- \frac{\varepsilon^{2k + 2}\ln \varepsilon^{2}}{k + 1} + \frac{\varepsilon^{2k + 2}}{ ( k + 1 )^{2}} \biggr] \biggr\}. \end{aligned}$$
(30)

By replacing (27) and (30) in Eq. (24), the mean of SIR dB is obtained □.

In order to calculate the variance, we start by Eq. (16) and calculate \(E\{\mathit{SIR}_{dB}^{2}\}\).

$$\begin{aligned} E \bigl\{ \mathit{SIR}_{dB}^{2} \bigr\} &= E \biggl\{ \biggl( 10 \log_{10} \biggl( \frac{1}{ d^{\alpha}} \biggr) - I_{dB} \biggr)^{2} \biggr\} \\ &= E \biggl\{ 100 \biggl( \log_{10} \biggl( \frac{1}{d^{\alpha}} \biggr) \biggr)^{2} \biggr\} + E \bigl\{ I_{dB}^{2} \bigr\} \\ &\quad {}- 2E \biggl\{ 10\log_{10} \biggl( \frac{1}{d^{\alpha}} \biggr) \biggr\}E \{ I_{dB} \}. \end{aligned}$$
(31)

The right-side of the above equation consists of 3 terms, among which the third is already known from Eqs. (27) and (30). Therefore, we concentrate on the first and second terms.

$$\begin{aligned} &E \biggl\{ 100 \biggl( \log_{10} \biggl( \frac{1}{d^{\alpha}} \biggr) \biggr)^{2} \biggr\} \\ &\quad = \frac{100\alpha^{2}}{ ( \ln 10 )^{2}}E \bigl\{ ( \ln d )^{2} \bigr\} \\ &\quad = \frac{100\alpha^{2}}{ ( \ln 10 )^{2}}\int_{\varepsilon}^{D} \frac{2x ( \ln x )^{2}}{D^{2} - \varepsilon^{2}}dx \\ &\quad = \frac{200\alpha^{2}}{ ( \ln 10 )^{2} \times ( D^{2} - \varepsilon^{2} )}\int_{\varepsilon}^{D} x ( \ln x )^{2}dx. \end{aligned}$$

To calculate the above integral, we use the following equality:

$$ \begin{aligned} \int x^{n} ( \ln x )^{2}dx &= \frac{x^{n + 1} ( \ln x )^{2}}{n + 1} - \frac{2x^{n + 1}}{ ( n + 1 )^{2}} \biggl( \ln x - \frac{1}{n + 1} \biggr) \\ &\quad {}+ \mathrm{constant}. \end{aligned} $$

We also define:

$$ L(x,n) \buildrel \Delta \over = \frac{x^{n + 1} ( \ln x )^{2}}{n + 1} - \frac{2x^{n + 1}}{ ( n + 1 )^{2}} \biggl( \ln x - \frac{1}{n + 1} \biggr). $$
(32)

Hence:

$$\begin{aligned} &E \biggl\{ 100 \biggl( \log_{10} \biggl( \frac{1}{d^{\alpha}} \biggr) \biggr)^{2} \biggr\} \\ &\quad = \frac{200\alpha^{2}}{ ( D^{2} - \varepsilon^{2} ) ( \ln 10 )^{2}} \bigl( L ( D,1 ) - L ( \varepsilon,1 ) \bigr). \end{aligned}$$
(33)

The second term of Eq. (31) is calculated in a similar way:

$$\begin{aligned} &E \bigl\{ ( I_{dB} )^{2} \bigr\} \\ &\quad = \int_{ - 10\log_{10}R}^{ - 10\log_{10}\varepsilon} x^{2}.f_{I_{dB}}(x)dx \\ &\quad = \int_{\varepsilon^{2}}^{R^{2}} \bigl( - 5\alpha \log_{10}(y) \bigr)^{2} ( N - 1 )\frac{ ( R^{2} - y )^{N - 2}}{ ( R^{2} - \varepsilon^{2} )^{N - 1}}dy, \end{aligned}$$

where, again Eq. (29) has been used to change the integration variable. Therefore:

$$\begin{aligned} E \bigl\{ ( I_{dB} )^{2} \bigr\} &= \frac{25\alpha^{2} ( N - 1 ) ( - 1 )^{N - 2}}{ ( R^{2} - \varepsilon^{2} )^{N - 1} ( \ln 10 )^{2}} \\ &\quad {}\times\int _{\varepsilon^{2}}^{R^{2}} \bigl( \ln (y) \bigr)^{2} \bigl( y - R^{2} \bigr)^{N - 2}dy \\ &= \frac{25\alpha^{2} ( N - 1 ) ( - 1 )^{N - 2}}{ ( R^{2} - \varepsilon^{2} )^{N - 1} ( \ln 10 )^{2}} \\ &\quad {}\times \int_{\varepsilon^{2}}^{R^{2}} \bigl( \ln (y) \bigr)^{2}\Biggl[ \sum_{k = 0}^{N - 2} \biggl\{ \left ( \begin{array} {c} N - 2 \\ k \end{array} \right ) \\ &\quad {}\times \bigl( - R^{2} \bigr)^{N - 2 - k}y^{k} \biggr\} \Biggr]dy \\ &= \frac{25\alpha^{2} ( N - 1 ) ( - 1 )^{N - 2}}{ ( R^{2} - \varepsilon^{2} )^{N - 1} ( \ln 10 )^{2}} \\ &\quad {}\times \sum_{k = 0}^{N - 2} \biggl\{ \left ( \begin{array} {c} N - 2 \\ k \end{array} \right ) \bigl( - R^{2} \bigr)^{N - 2 - k} \\ &\quad {} \times \biggl[ \int_{\varepsilon^{2}}^{R^{2}} \bigl( \ln (y) \bigr)^{2}y^{k}dy \biggr] \biggr\} \\ &= \frac{25\alpha^{2} ( N - 1 ) ( - 1 )^{N - 2}}{ ( R^{2} - \varepsilon^{2} )^{N - 1} ( \ln 10 )^{2}} \\ &\quad {}\times \sum_{k = 0}^{N - 2} \biggl\{ \left ( \begin{array} {c} N - 2 \\ k \end{array} \right ) \bigl( - R^{2} \bigr)^{N - 2 - k} \\ &\quad {} \times \bigl[ L\bigl(R^{2},k\bigr) - L\bigl(\varepsilon^{2},k\bigr) \bigr] \biggr\}, \end{aligned}$$
(34)

where, L(x,n) is defined in Eq. (32).

Equations (33) and (34) calculate the first and second terms of Eq. (31). The third term is obtained from Eqs. (27) and (30). As a result, \(E\{\mathit{SIR}_{dB}^{2}\}\) is calculated.

Finally, the variance of the random variable SIR dB is calculated as follows:

$$ \operatorname{var}\{\mathit{SIR}_{dB} \}= E\bigl\{ \mathit{SIR}_{dB}^{2} \bigr\} - \bigl(E\{\mathit{SIR}_{dB} \}\bigr)^{2}. $$
(35)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezagah, R.E., Mohammadi, A. Analyzing the capacity of wireless ad hoc networks. Telecommun Syst 55, 159–167 (2014). https://doi.org/10.1007/s11235-013-9758-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9758-2

Keywords

Navigation