Skip to main content

Advertisement

Log in

Energy-efficient communication networks for improved global energy productivity

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Recently, a lot of effort has been put into research and development of energy-efficient devices and systems and into optimization of the network infrastructure with regard to energy consumption. On the one hand, reducing total power consumption of global communication networks has become an imperative and an important step towards the future highly energy-efficient Internet. On the other hand, capacity and performance of the Internet must be continuously improved in order to meet the high requirements set by the continuously increasing of both the number of broadband subscribers and the amount of user traffic. Thus, only a highly energy-efficient and high-performance network infrastructure designed to efficiently support advanced applications and services for improving energy productivity in many other branches of business and society can significantly contribute to global energy savings. This paper briefly discusses potentials and options for achieving such an energy-efficient network infrastructure. Some examples of software applications and services for global energy savings are briefly reviewed. The aim of this paper is to draw attention to the need for a holistic approach to evaluate energy efficiency and to improve the global energy productivity through the use of high-performance and energy-efficient networks, services and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cisco, White paper, June 2010.

  2. Point-Topic (2010). http://point-topic.com/gbs_home.php.

  3. Climate Group & GeSI, Report 2007.

  4. Lange, C., Kosiankowski, D., Gerlach, C., Westphal, F.-J., & Gladisch, A. (2009). Energy consumption of telecommunication networks. In ECOC 2009, Vienna, Austria, Sept. 20–24. Paper 5.5.3.

    Google Scholar 

  5. The Climate Group (2008). SMART 2020: enabling the low carbon economy in the information age, GLobal eSustainability Initiative (Techn. Rep.).

  6. Aleksić, S. (2009). Analysis of power consumption in future high-capacity network nodes. IEEE/OSA Journal of Optical Communications and Networking, 1(3), 245–258.

    Article  Google Scholar 

  7. Top500 Computer Sites: statistics on high-performance computers (2013). http://www.top500.org/.

  8. Fehratović, N., & Aleksić, S. (2011). Power consumption and scalability of optically switched interconnects for high-capacity network elements. In Optical fiber communication conference and exposition (OFC 2011), Los Angeles, CA, USA, March 2011 (pp. JWA84-1–JWA84-3).

    Google Scholar 

  9. WWTF (2008). The potential global CO 2 reductions from ICT use (WWTF report).

  10. WWTF (2008). Outline for the first global IT strategy for CO 2 reduction (WWTF report).

  11. Aleksić, S. (2010). Electrical power consumption of large electronic and optical switching fabrics. In IEEE winter topicals 2010, Majorca, Spain (pp. 95–96).

    Google Scholar 

  12. Aleksić, S. (2011). Energy efficiency of electronic and optical network elements, invited. IEEE Journal of Selected Topics in Quantum Electronics, 17(2), 296–308.

    Article  Google Scholar 

  13. AEA (2009). Guidelines to Defra/DECC’s GHG conversion factors for company reporting.

  14. Carbon Neutral Company (2009). “Carbon Offset Factors”, September 2009.

  15. Managing data center power and cooling (2007). White paper, Force10 Networks, Inc.

  16. Ennser, K., Mangeni, S., Taccheo, S., & Aleksić, S. (2011). Techno-economic feasibility studies for solar powered passive optical network. In Proc. SPIE: Vol. 7958. SPIE photonics west 2011 (pp. 1–7), San Francisco, CA, USA.

    Google Scholar 

  17. Motorola (2007). Alternatives for powering telecommunications base stations. White Paper.

  18. Tucker, R. S. (2006). The role of optics and electronics in high-capacity routers. IEEE Journal of Lightwave Technology, 24(12), 4655–4673.

    Article  Google Scholar 

  19. Vitesse: VSC3040 and VSC3008, cross-point switches, data sheets. http://www.vitesse.com (2008).

  20. AMCC PRS-Q80G, packet switch, data sheets. http://www.amcc.com (2009).

  21. Analog Devices: ADN4604, cross-point switch, data sheets. http://www.analog.com (2009).

  22. Fulcrum Microsystems: FM3224 and FM3212-buffered packet switches. http://www.fulcrummicro.com/ (2009).

  23. Wang, H., Wonfor, A., Williams, K. A., Penty, R. V., & White, I. H. (2009). Demonstration of a lossless monolithic 16×16 QW SOA switch. In Proceedings of the 35th European conference on optical communication (ECOC), Vienna, September 2009 (pp. 6.2.3–1/2).

    Google Scholar 

  24. Yano, M., Yamagishi, F., & Tsuda, T. (2005). Optical MEMS for photonic switching—compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks. IEEE Journal on Selected Tropics in Quantum Electronics, 11(2), 383–394.

    Article  Google Scholar 

  25. Puype, B., Vereecken, W., Colle, D., Pickavet, M., & Demeester, P. (2009). Power reduction techniques in multilayer traffic engineering. presented at the ICTON, Sao Miguel, Portugal, Paper Mo. B3.1. Jun. 2009.

  26. Norros, I., & Flinck, H. (2011). Powering Internet with power-law networking. Telecommunications Systems, 48(1–2), 63–75.

    Article  Google Scholar 

  27. Muhammad, A., Monti, P., Cerutti, I., Wosinska, L., Castoldi, P., & Tzanakaki, A. (2010). Energy-efficient WDM network planning with dedicated protection resources in sleep mode. In GLOBECOM, Miami, Florida, USA, Dec. 2010 (pp. 1–5).

    Google Scholar 

  28. Cerutti, I., Sambo, N., & Castoldi, P. (2011). Sleeping link selection for energy-efficient GMPLS networks. Journal of Lightwave Technology, 29(15), 2292–2298.

    Article  Google Scholar 

  29. Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R., Seely, T., & Diot, C. (2002). Packet-level traffic measurements from the sprint IP backbone. IEEE Network, 17(6), 6–16.

    Article  Google Scholar 

  30. IETF (2001). Multiprotocol label switching architecture, RFC3031, January 2001.

  31. Banerjee, A., Drake, J., Lang, J., Turner, B., Awduche, D., Berger, L., Kompella, K., & Rekhter, Y. (2001). Generalized multiprotocol label switching: an overview of signaling enhancements and recovery techniques. IEEE Communications Magazine, 39(7), 144–151.

    Article  Google Scholar 

  32. ITU Telecommunication Standardization Sector (2001). Architecture for the automatic switched transport network (ASTN). ITU-T Rec. G.807/Y.1302 ed., Nov. 2001.

  33. Bernstein, G., Rajagopalan, B., & Spears, D. “OIF UNI 1.0—controlling optical networks”, White paper, Optical Internetworking Forum (2001).

  34. ITU Telecommunication Standardization Sector (2003). Optical transport network (OTN). ITU-T Rec. G.709/Y1331 ed., Mar. 2003.

  35. ITU Telecommunication Standardization Sector (2000). Optical transport hierarchy. ITU-T Rec G.871/Y.1301 ed.

  36. Molinero-Fernàndez, P., & McKeown, N. (2002). TCP switching: exposing circuits to IP. IEEE MICRO, 22(1), 82–89.

    Article  Google Scholar 

  37. Aleksić, S. (2010). Power consumption of hybrid optical switches. In Proceedings of OSA/IEEE optical fiber communication conference and exposition (OFC 2010), San Diego, CA, USA, paper OThP6.

    Google Scholar 

  38. Chan, W. W. S. (2010). Optical flow switching. In Proceedings of OSA/IEEE optical fiber communication conference and exposition (OFC 2010), San Diego, CA, USA, paper OWI6.

    Google Scholar 

  39. Vu, H. L., Zalesky, A., Wong, E. W. M., Rosberg, Z., Bilgrami, S. M. H., Zukerman, M., & Tucker, R. S. (2005). Scalable performance evaluation of a hybrid optical switch. IEEE Journal of Lightwave Technology, 23, 2961–2973.

    Article  Google Scholar 

  40. Chen, B., & Wang, J. (2003). Hybrid switching and p-routing for optical burst switching networks. IEEE Journal on Selected Areas in Communications, 21(7), 1071–1080.

    Article  Google Scholar 

  41. Wong, E. W. M., & Zukerman, M. (2006). Analysis of an optical hybrid switch. IEEE Communications Letters, 10, 108–110.

    Article  Google Scholar 

  42. De Leenheer, M., Develder, C., Buysse, J., Dhoedt, B., & Demeester, P. (2008). Dimensioning of combined OBS/OCS networks. In WOBS 2008.

    Google Scholar 

  43. Takagi, M., Li, H., Watabe, K., Imaizumi, H., Tanemura, T., Nakano, Y., & Morikawa, H. (2009). 400 Gb/s hybrid optical switching demonstration combining multi-wavelength OPS and OCS with dynamic resource allocation. In OFC2009, Paper OTuA6.

    Google Scholar 

  44. Aleksić, S. (2010). Technologies and approaches for improving energy efficiency of network elements (invited). In Proceedings of OSA photonics in switching (PS 2010), Monterey, CA, USA, July 2010, Paper PTuB3.

    Google Scholar 

  45. Fiorani, M., Casoni, M., & Aleksić, S. (2011). Performance and power consumption analysis of a hybrid optical core node. IEEE/OSA Journal of Optical Communications and Networking, 3(6), 502–513.

    Article  Google Scholar 

  46. Aleksić, S. (2011). Optically transparent integrated metro-access network. Telecommunications Systems, 52(3), 1505–1515.

    Article  Google Scholar 

  47. Aleksić, S., & Lovrić, A. (2010). Power consumption of wired access network technologies. In 7th IEEE/IET international symposium on communication systems, networks and digital signal processing (CSNDSP 2010), Newcastle, June 2010 (pp. 154–158).

    Google Scholar 

  48. Aleksić, S., & Lovrić, A. (2010). Power efficiency in wired access networks. Elektrotechnik und Informationstechnik (e&i), 127(11).

  49. Lovrić, A., & Aleksić, S. (2010). Influence of uplink limitation and broadcast traffic on power efficiency in long-reach optical networks. In Asia communications & photonics conference & exhibition (ACP 2010), Shanghai, China, December 2010, Paper SuP4.

    Google Scholar 

  50. Aleksić, S., Lovric, A., (2011). Energy consumption and environmental implications of wired access networks. American Journal of Engineering and Appl. Sciences, Science Publications, 4(4), 531–539.

    Article  Google Scholar 

  51. Aleksić, S. (2011). Termodynamic aspects of communication and information processing systems (invited). In 13th international conference on transparent optical networks (ICTON 2011), Stockholm, Sweden, June 2011, paper Tu. B1.2.

    Google Scholar 

  52. Aleksić, S. (2012). Energy and entropy flow in erbium doped fiber amplifiers: a thermodynamic approach. IEEE Journal of Lightwave Technology, 13(17), 2832–2838.

    Article  Google Scholar 

  53. Aleksić, S. Energy, entropy and energy in communication Networks. Entropy Journal, MDPI, accepted for publication in the Special Issue on Entropy and the Second Law of Thermodynamics, scheduled for publication in August 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slaviša Aleksić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksić, S. Energy-efficient communication networks for improved global energy productivity. Telecommun Syst 54, 183–199 (2013). https://doi.org/10.1007/s11235-013-9726-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9726-x

Keywords

Navigation