Skip to main content
Log in

A bi-criteria minimum spanning tree routing model for MPLS/overlay networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The MPLS platform enables the implementation of advanced multipath and multicast routing schemes. This work develops and analyses the performance of a new bi-criteria minimum spanning tree model intended for routing broadcast messages in MPLS networks or constructing tree-based overlay networks. The aim of the model is to obtain spanning trees which are compromise solutions with respect to two important traffic engineering metrics: load balancing cost and average delay bound. An exact solution to the formulated bi-criteria optimization problem is presented, which is based on an algorithm that enables the computation of the set of supported non-dominated spanning trees. An application model and a set of experiments on randomly generated Internet type topologies will also be presented. Finally a network performance analysis of the model considering three network performance metrics will be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network flows—theory, algorithms and applications. New York: Prentice Hall.

    Google Scholar 

  2. Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., & Xiao, X. (2002). Overview and principles of Internet traffic engineering. IETF Network Working Group, RFC3272.

  3. Calvert, K., & Zegura, E. (1996). GT Internetwork Topology Models (GT-ITM). College of Computing, Georgia Institute of Technology. http://www.cc.gat-ech.edu/fac/Ellen.Zegura/graphs.html.

  4. Cerulli, R., Fink, A., Gentili, M., & Voss, S. (2006). Extensions of the minimum labelling spanning tree problem. Journal of Telecommunications and Information Technology, 4, 39–45.

    Google Scholar 

  5. Clímaco, J., Craveirinha, J., & Pascoal, M. (2006). An automated reference point-like approach for multicriteria shortest path problems. Journal of Systems Science and Systems Engineering, 15(3), 314–329.

    Article  Google Scholar 

  6. Clímaco, J., Craveirinha, J., & Pascoal, M. (2007). Multicriteria routing models in telecommunication networks—overview and a case study. In Y. Shi, D. Olson, & A. Stam (Eds.), Advances in multiple criteria decision making and human systems management: knowledge and wisdom (pp. 17–46). Amsterdam: IOS Press, edited in honor of Milan Zeleny, Chap. 1.

    Google Scholar 

  7. Cohen, J. (1978). Multiobjective programming and planning. San Diego: Academic Press.

    Google Scholar 

  8. Craveirinha, J., Clímaco, J., Pascoal, M., & Martins, L. (2007). Traffic splitting in MPLS networks—a hierarchical multicriteria approach. Journal of Telecommunications and Information Technology, 4, 3–10.

    Google Scholar 

  9. Doar, M., & Leslie, I. (1993). How bad is naive multicast routing. In INFOCOM (1) (pp. 82–89), San Francisco, USA.

    Google Scholar 

  10. Erbas, S., & Erbas, C. (2003). A multiobjective off-line routing model of MPLS networks. In Proceedings 18th int. teletraf. congr., Berlin, Germany.

    Google Scholar 

  11. Erdös, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae, 6, 290–297.

    Google Scholar 

  12. da Silva, C. G. & Clímaco, J. (2007). A note on the computation of ordered supported non-dominated solutions in the bi-criteria minimum spanning tree problems. Journal of Telecommunications and Information Technology, 4, 11–15.

    Google Scholar 

  13. Hamacher, H., & Ruhe, G. (1994). On spanning tree problems with multiple objectives. Annals of Operation Research, 52, 209–230.

    Article  Google Scholar 

  14. Knowles, J., Oates, M., & Corne, D. (2000). Advanced multiobjective evolutionary algorithms applied to two problems in telecommunications. BT Technology Journal, 18(4), 51–65.

    Article  Google Scholar 

  15. Mieghem, P. V., & Langen, S. (2005). Influence of the link weight structure on the shortest path. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 71(5), 056113-13.

    Google Scholar 

  16. Mieghem, P. V., & Kuipers, F. A. (2004). Concepts of exact QoS routing algorithms. IEEE/ACM Transactions on Networking, 12(5), 851–864.

    Article  Google Scholar 

  17. Pinto, D., & Barán, B. (2005). Solving multiobjective multicast routing problem with a new ant colony optimization approach. In Proceedings of the 3rd international IFIP/ACM Latin American conference on networking (pp. 11–19), Cali, Columbia.

    Chapter  Google Scholar 

  18. Prim, R. C. (1957). Shortest connection networks and some generalizations. The Bell System Technical Journal, 36, 1389–1401.

    Google Scholar 

  19. Rosenbaum, G., Chou, C. T., Jha, S., & Medhi, D. (2005). Dynamic routing of restorable QoS connections in MPLS networks. In Proc. of 30th annual IEEE conference on local computer networks (LCN2005), Sydney, Australia.

    Google Scholar 

  20. Ruzika, S., & Hamacher, H. (2009). A survey on multiple objective minimum spanning tree problems. In J. Lerner, D. Wagner, & K. Zweig (Eds.), LNCS: Vol. 5515. Algorithmics (pp. 104–116). Berlin: Springer.

    Google Scholar 

  21. Sharma, S., Gopalan, K., Nanda, S., & Chiueh, T. (2004). Viking: a multi-spanning-tree Ethernet architecture for metropolitan area and cluster networks. In Proc. of INFOCOM 2004, twenty-third annualjoint conference of the IEEE computer and communications societies (Vol. 4, pp. 2283–2294), Hong Kong, China.

    Google Scholar 

  22. Srivatsa, M., Gedik, B., & Liu, L. (2004). Scaling unstructured peer-to-peer networks with multi-tier capacity-aware overlay topologies. In Proceedings of the 10th international conference on parallel and distributed systems. New York: IEEE Press.

    Google Scholar 

  23. Steuer, R. E. (1986). Multiple criteria optimization: theory, computation and application. New York: Wiley.

    Google Scholar 

  24. Stiliadis, D. & Varma, A. (1998). Lattency-rate servers: a general model for analysis of traffic scheduling algorithms. IEEE/ACM Transactions on Networking, 6, 611–624.

    Article  Google Scholar 

  25. Wang, H., & Mieghem, P. V. (2007). Constructing the overlay network by tuning link weights. In Proceedings of the 2nd international conference on communications and networking, China.

    Google Scholar 

  26. Wierzbicki, A. (1980). The use of reference objectives in multiobjective optimization. In G. Fandel & T. Gal (Eds.), Lecture notes in economics and mathematical systems: Vol. 177. MCDM theory and applications, proceedings (pp. 468–487). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lúcia Martins.

Additional information

Work financially supported by programme COMPETE of the EC Community Support Framework III and cosponsored by the EC fund FEDER and national funds (FCT).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craveirinha, J., Clímaco, J., Martins, L. et al. A bi-criteria minimum spanning tree routing model for MPLS/overlay networks. Telecommun Syst 52, 203–215 (2013). https://doi.org/10.1007/s11235-011-9553-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9553-x

Keywords

Navigation