Skip to main content
Log in

A self-optimized random access protocol for an infrastructure-less mission critical wireless networking system

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

A random access protocol with multiple receivers per mobile node for infrastructure-less mission critical wireless networking system is introduced and analyzed. Each receiver of a mobile node may receive a packet in the presence of collision depending on the receiver quality defined as capture ratio. The maximum throughput per mobile node depends exclusively on the number of receivers per node and the capture ratio. Since the maximum throughput is independent of the variable factors of the network, the network is self-optimized. The self-optimized throughput increases with the increase of the number of receivers per node and the quality of each receiver (defined as capture ratio). On the other hand, the cost per mobile node also increases with the increase of the number of receivers per node and the quality of each receiver. The trade-off between the self-optimized throughput per node and the cost per mobile node is analyzed. In mission critical networking system, most of the traffic may be the real-time traffic, where the number of retransmission attempts is limited. The normalized delay is almost constant if the number of retransmission attempts is more than eight. However, the packet rejection probability decreases with the increase of the number of retransmission attempts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wenbo, H., Ying, H., Sathyam, R., Nahrstedt, K., & Lee, W. C. (2009). SMOCK: a scalable method of cryptographic key management for mission-critical wireless ad-hoc networks. IEEE Transactions on Information Forensics and Security, 4(1), 140–150.

    Article  Google Scholar 

  2. Doshi, S. R., Duong, H. H., Bagrodia, R. L., & Thai, S. (2006). Spectrum and network management convergence for wireless communications. In IEEE military communications conference (MILCOM), Oct. (pp. 1–7).

    Google Scholar 

  3. Wang, H., Crilly, B., Zhao, W., Autry, C., & Swank, S. (2007). Implementing mobile ad hoc networking (MANET) over legacy tactical radio links. In IEEE military communications conference (MILCOM), Oct. (pp. 1–7).

    Chapter  Google Scholar 

  4. Kantawala, A., Voce, D., & Gokhale, D. (2006). QoS architecture for session oriented GIG applications. In IEEE aerospace conference (pp. 1–9).

    Google Scholar 

  5. Srivastava, G., Boustead, P., Chicharo, J. F., & Ware, C. (2003). TCMCA: a source-based distributed topology control algorithm for mission critical applications in mobile ad-hoc networks. In The 11th IEEE int. conf. on networks (ICON), Sept.–Oct. (pp. 161–166).

    Google Scholar 

  6. Abramson, N. (1994). Multiple access in wireless digital networks. Proceedings of the IEEE, 82(9), 1360–1370.

    Article  Google Scholar 

  7. Abramson, N. (1996). Wideband random access for the last mile. IEEE Personal Communications, 3(6), 29–33.

    Article  Google Scholar 

  8. van der Plas, C., & Linnartz, J.-P. M. G. (1990). Stability of mobile slotted ALOHA network with Rayleigh fading, shadowing, and near-far effect. IEEE Transactions on Vehicular Technology, 39(4), 359–366.

    Article  Google Scholar 

  9. Thomopoulos, S. C. A. (1988). A simple and versatile decentralized control for slotted ALOHA, reservation ALOHA, and local area networks. IEEE Transactions on Communications, COM-36, 662–674.

    Article  Google Scholar 

  10. Jeong, D. G., & Jeon, W. S. (1995). Performance of an exponential backoff scheme for slotted-ALOHA protocol in local wireless environment. IEEE Transactions on Vehicular Technology, 44, 470–479.

    Article  Google Scholar 

  11. Sarker, J. H., & Halme, S. J. (2000). An optimum retransmission cut-off scheme for slotted ALOHA. Wireless Personal Communications, 13(1–2), 185–202.

    Article  Google Scholar 

  12. Cho, S. H., & Park, S. H. (2001). Stabilised random access protocol for voice/data integrated WCDMA system. Electronics Letters, 37(19), 1197–1199.

    Article  Google Scholar 

  13. Lin, Y.-S. (2002). Performance analysis of frequency-hop packet radio networks with generalized retransmission backoff. IEEE Transactions on Wireless Communications, 1(4), 703–711.

    Article  Google Scholar 

  14. Sakakibara, K., Seto, T., Yoshimura, D., & Yamakita, J. (2003). Effect of exponential backoff scheme and retransmission cutoff on the stability of frequency-hopping slotted ALOHA systems. IEEE Transactions on Wireless Communications, 2(4), 714–722.

    Article  Google Scholar 

  15. Sarker, J. H. (2006). Stable and unstable operating regions of slotted ALOHA with number of retransmission attempts and number of power levels. IEE Proceedings Communications, 153(3), 355–364.

    Article  Google Scholar 

  16. Thomas, G. (2000). Capacity of the wireless packet collision channel without feedback. IEEE Transactions on Information Theory, 46(3), 1141–1144.

    Article  Google Scholar 

  17. Sarker, J. H., & Halme, S. J. (2003). An auto controlled algorithm for slotted ALOHA. IEE Proceedings Communications, 150(1), 53–58.

    Article  Google Scholar 

  18. Sarker, J. H., Hassan, M., & Halme, S. J. (2002). Power level selection schemes to improve throughput and stability of slotted ALOHA under heavy load. Computer Communications, 25(18), 1719–1726.

    Article  Google Scholar 

  19. Bing, B. (2000). Stabilization of the randomized slotted ALOHA protocol without the use of channel feedback information. IEEE Communications Letters, 4(8), 249–251.

    Article  Google Scholar 

  20. MacKenzie, A. B., & Wicker, S. B. (2001). Game theory and the design of self-configuring, adaptive wireless networks. IEEE Communications Magazine, 39(11), 126–131.

    Article  Google Scholar 

  21. Wang, D., Comaniciu, C., Minn, H., & Al-Dhahir, N. (2008). A game-theoretic approach for exploiting multiuser diversity in cooperative slotted ALOHA. IEEE Transactions on Wireless Communications, 7(11), 4215–4225.

    Article  Google Scholar 

  22. Jin, Y., & Kesidis, G. (2002). Equilibria of a noncooperative game for heterogeneous users of an ALOHA network. IEEE Communications Letters, 6(7), 282–284.

    Article  Google Scholar 

  23. Cho, Y., & Tobagi, F. A. (2008). Cooperative and non-cooperative ALOHA games with channel capture. In IEEE global telecommunications conference (GLOBECOM), New Orleans, LO, Nov.–Dec. (pp. 1–6).

    Google Scholar 

  24. Tong, L., Naware, V., & Venkitasubramaniam, P. (2004). Signal processing in random access. IEEE Signal Processing Magazine, 21(5), 29–39.

    Article  Google Scholar 

  25. Sarker, J. H., & Mouftah, H. T. (2009). A Retransmission Cut-Off Random Access Protocol with Multi-Packet Reception for Wireless Networks. In The third international conference on sensor technologies and applications (SENSORCOMM), Athens, Greece, June (pp. 217–220).

    Chapter  Google Scholar 

  26. Lau, C. T., & Leung, C. (1990). A slotted ALOHA packet radio system with multiple antennas and receivers. IEEE Transactions on Vehicular Technology, 39(3), 218–226.

    Article  Google Scholar 

  27. Lau, C., & Leung, C. (1988). Throughput of slotted ALOHA channel with multiple antennas and receivers. Electronics Letters, 24(25), 1540–1542.

    Article  Google Scholar 

  28. Shinomiya, T., & Suzuki, H. (2000). Slotted ALOHA mobile packet communication systems with multiuser detection in a base station. IEEE Transactions on Vehicular Technology, 49(3), 948–955.

    Article  Google Scholar 

  29. Chen, C. C., Tjhung, T. T., Chew, Y. H., & Wang, E. (2005). Multiple delay capture probability and performance of DS-SS slotted ALOHA packet radio system. In IEEE international conference on communications (ICC), May (Vol. 2, pp. 895–900).

    Google Scholar 

  30. Ngo, M. H., & Krishnamurthy, V. (2007). Game theoretic cross-layer transmission policies in multipacket reception wireless networks. IEEE Transactions on Signal Processing, 55(5), 1911–1926.

    Article  Google Scholar 

  31. Li, T., Wang, H., & Tong, L. (2006). Hybrid ALOHA: a novel medium access control protocol. In IEEE international conference on acoustics, speech and signal processing (ICASSP), May (Vol. 4, pp. IV 257–IV 260).

    Google Scholar 

  32. Wang, H., & Li, T. (2007). Hybrid ALOHA: a novel MAC protocol. IEEE Transactions on Signal Processing, 55(12), 5821–5832.

    Article  Google Scholar 

  33. Zheng, P. X., Zhang, Y. J., & Liew, S. C. (2006). Analysis of exponential backoff with multipacket reception in wireless networks. In 31st IEEE conference on local computer networks, Nov. (pp. 855–862).

    Google Scholar 

  34. Samano-Robles, R., Ghogho, M., & McLernon, D. C. (2008). An infinite user model for random access protocols assisted by multipacket reception and retransmission diversity. In IEEE 9th workshop on signal processing advances in wireless communications, (SPAWC), July 2008 (pp. 111–115).

    Google Scholar 

  35. Zhao, Q., & Tong, L. (2003). A multiqueue service room MAC protocol for wireless networks with multipacket reception. IEEE/ACM Transactions on Networking 11, 125–137.

    Article  Google Scholar 

  36. Zhao, Q., & Tong, L. (2004). A dynamic queue protocol for multi-access wireless networks with multipacket reception. IEEE Transactions on Wireless Communications, 3(6), 2221–2231.

    Article  Google Scholar 

  37. Ngo, M. H., Krishnamurthy, V., & Tong, L. (2008). Optimal channel-aware ALOHA protocol for random access in WLANs with multipacket reception and decentralized channel state information. IEEE Transactions on Signal Processing, 56(6), 2575–2588.

    Article  Google Scholar 

  38. Sarker, J. H., & Mouftah, H. T. (2008). “Stability of multiple receiving nodes slotted ALOHA for wireless ad hoc networks. In IEEE Global Telecommunications Conference (GLOBECOM), New Orleans, LO, Nov.–Dec. (pp. 1–5).

    Google Scholar 

  39. Sarker, J. H., & Mouftah, H. T. (2009). Maximizing throughput with multiple power levels in a random access infrastructure-less radio system. In IEEE international conference on communications (ICC), Dresden, Germany, June (pp. 1–6).

    Google Scholar 

  40. Sarker, J. H., & Mouftah, H. T. (2010). A random access protocol with multi-packet reception for infrastructure-less wireless autonomic networks. Wireless Personal Communications, 56(3), 447–456. Available at: www.springerlink.com/content/k58657832l700731/.

    Article  Google Scholar 

  41. Bettstetter, C., & Zangl, J. (2002). How to achieve a connected ad hoc network with homogeneous range assignment: an analytical study with consideration of border effects. In 4th international workshop on mobile and wireless comm. networks, Sept. (pp. 125–129).

    Chapter  Google Scholar 

  42. Bettstetter, C. (2005). Connectivity of wireless multihop networks in a shadow fading environment. Wireless Networks, 11(5), 571–579.

    Article  Google Scholar 

  43. Chen, Q., Kanhere, S. S., & Hassan, M. (2009). Analysis of per-node traffic load in multi-hop wireless sensor networks. IEEE Transactions on Wireless Communications, 8(2), 958–967.

    Article  Google Scholar 

  44. Arnbak, J., & van Blitterswijk, W. (1987). Capacity of slotted ALOHA in Rayleigh-Fading channels. IEEE Journal on Selected Areas in Communications, 5(2), 261–269.

    Article  Google Scholar 

  45. Shinomiya, T., & Suzuki, H. (2000). Slotted ALOHA mobile packet communication systems with multiuser detection in a base station. IEEE Transactions on Vehicular Technology, 49(3), 948–955.

    Article  Google Scholar 

  46. Sakakibara, K. (1992). Performance approximation of a multi-base station slotted ALOHA for wireless lan’s. IEEE Transactions on Vehicular Technology, 41(4), 448–454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahangir H. Sarker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarker, J.H., Mouftah, H.T. A self-optimized random access protocol for an infrastructure-less mission critical wireless networking system. Telecommun Syst 52, 2133–2144 (2013). https://doi.org/10.1007/s11235-011-9490-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9490-8

Keywords

Navigation