Skip to main content
Log in

Correlation between transverse momenta in the string fusion model

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain an explicit analytic expression for the asymptotic behavior of the coefficient of correlation between the average transverse momenta of particles formed in a given event in rapidity-separated intervals. The asymptotic behavior is found for a large density of strings with their fusion taken into account by introducing a lattice in the transverse plane and using the translation invariance in rapidity of the string decay process at high energies. It is established that unlike the correlation between the momenta of individual particles, the correlation between the average transverse momenta of all particles created in a given event in two separated rapidity intervals does not decrease as the total number of formed strings increases, which makes this type of correlation promising for observation in nuclear collision processes at high energies. We also show that in this limit, the asymptotic behavior of the coefficient of correlation between the average transverse momenta is independent of the variance of the number of particles formed during the string fragmentation unlike previously studied correlations between multiplicities or between the average transverse momenta and the multiplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Gribov, Sov. Phys. JETP, 26, 414–423 (1968).

    ADS  Google Scholar 

  2. E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP, 44, 443–451 (1976)

    ADS  Google Scholar 

  3. E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP, 45, 199–204 (1977).

    MathSciNet  ADS  Google Scholar 

  4. I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys., 28, 822–829 (1978).

    Google Scholar 

  5. A. B. Kaidalov, Phys. Lett. B, 116, 459–463 (1982).

    Article  ADS  Google Scholar 

  6. A. Capella, U. Sukhatme, C.-I. Tan, and J. Tran Thanh Van,, 81, 68–74 (1979).

    Google Scholar 

  7. J. Schwinger, Phys. Rev., 82, 664–679 (1951).

    Article  MathSciNet  ADS  Google Scholar 

  8. X. Artru, Phys. Rept., 97, 147–171 (1983).

    Article  ADS  Google Scholar 

  9. T. S. Biro, H. B. Nielsen, and J. Knoll, Nucl. Phys. B, 245, 449–468 (1984).

    Article  ADS  Google Scholar 

  10. A. Bialas and W. Czyz, Nucl. Phys. B, 267, 242–252 (1986).

    Article  ADS  Google Scholar 

  11. M. A. Braun and C. Pajares, Phys. Lett. B, 287, 154–158 (1992).

    Article  ADS  Google Scholar 

  12. M. A. Braun and C. Pajares, Nucl. Phys. B, 390, 542–558 (1993).

    Article  ADS  Google Scholar 

  13. M. A. Braun, F. del Moral, and C. Pajares, Phys. Rev. C, 65, 024907 (2002); arXiv:hep-ph/0105263v2 (2001).

    Article  ADS  Google Scholar 

  14. K. Aamodt et al. [ALICE Collab.], Phys. Rev. Lett., 105, 252301 (2010); arXiv:1011.3916v3 [nucl-ex] (2010).

    Article  ADS  Google Scholar 

  15. N. S. Amelin, N. Armesto, M. A. Braun, E. G. Ferreiro, and C. Pajares, Phys. Rev. Lett., 73, 2813–2816 (1994).

    Article  ADS  Google Scholar 

  16. B. Alessandro et al. [ALICE Collab.], J. Phys. G, 32, 1295–2040 (2006).

    Article  ADS  Google Scholar 

  17. M. A. Braun, C. Pajares, and V. V. Vechernin, Phys. Lett. B, 493, 54–64 (2000); arXiv:hep-ph/0007241v1 (2000).

    Article  ADS  Google Scholar 

  18. M. A. Braun, R. S. Kolevatov, C. Pajares, and V. V. Vechernin, Eur. Phys. J. C, 32, 535–546 (2004); arXiv:hepph/ 0307056v1 (2003).

    Article  ADS  Google Scholar 

  19. V. V. Vechernin and R. S. Kolevatov, Phys. Atom. Nucl., 70, 1797–1808 (2007).

    Article  ADS  Google Scholar 

  20. N. S. Amelin, M. A. Braun, and C. Pajares, Phys. Lett. B, 306, 312–318 (1993).

    Article  ADS  Google Scholar 

  21. M. A. Braun and C. Pajares, Eur. Phys. J. C, 16, 349–359 (2000); arXiv:hep-ph/9907332v1 (1999).

    Article  ADS  Google Scholar 

  22. V. V. Vechernin and R. S. Kolevatov, Vestn. Peterb. Univ. Ser. 4: Fiz. Khim., No. 2, 12–23 (2004); arXiv:hepph/ 0304295v1 (2003).

    Google Scholar 

  23. M. A. Braun and C. Pajares, Phys. Rev. Lett., 85, 4864–4867 (2000); arXiv:hep-ph/0007201v1 (2000).

    Article  ADS  Google Scholar 

  24. V. V. Vechernin and H. S. Nguyen, Phys. Rev. C, 84, 054909 (2011); arXiv:1102.2582v2 [hep-ph] (2011).

    Article  ADS  Google Scholar 

  25. V. Vechernin, Nucl. Phys. A, 939, 21–45 (2015); arXiv:1210.7588v5 [hep-ph] (2012).

    Article  ADS  Google Scholar 

  26. V. V. Vechernin and R. S. Kolevatov, Phys. Atom. Nucl., 70, 1809–1818 (2007).

    Article  ADS  Google Scholar 

  27. V. V. Vechernin and R. S. Kolevatov, Vestn. Peterb. Univ. Ser. 2: Fiz. Khim., No. 4, 11–27 (2004); arXiv:hepph/0305136v1 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vechernin.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 3, pp. 437–448, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vechernin, V.V. Correlation between transverse momenta in the string fusion model. Theor Math Phys 184, 1271–1280 (2015). https://doi.org/10.1007/s11232-015-0334-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0334-7

Keywords

Navigation