Skip to main content
Log in

Matching branches of a nonperturbative conformal block at its singularity divisor

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

A conformal block is a function of many variables, usually represented as a formal series with coefficients that are certain matrix elements in the chiral (i.e., Virasoro) algebra. A nonperturbative conformal block is a multivalued function defined globally over the space of dimensions and has many branches and, perhaps, additional free parameters not seen at the perturbative level. We discuss additional complications of the nonperturbative description that arise because all the best-studied examples of conformal blocks are at the singularity locus in the moduli space (at divisors of the coefficients or, simply, at zeros of the Kac determinant). A typical example is the Ashkin-Teller point, where at least two naive nonperturbative expressions are provided by the elliptic Dotsenko-Fateev integral and by the celebrated Zamolodchikov formula in terms of theta constants, and they differ. The situation is somewhat similar at the Ising and other minimal model points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B, 241, 333–380 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  2. A. B. Zamolodchikov and Al. B. Zamolodchikov, Conformal Field Theory and Critical Phenomena in Two-Dimensional Systems, MNTsNO (2009)

    Google Scholar 

  3. L. Alvarez-Gaumé, Helv. Phys. Acta, 64, 359–626 (1991)

    MathSciNet  Google Scholar 

  4. P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory,Springer, eds (1997).

    Google Scholar 

  5. M. Sato, RIMS Kokyuroku, 439, 30–46 (1981)

    Google Scholar 

  6. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” in: Nonlinear Integrable Systems: Classical Theory and Quantum Theory (M. Jimbo and T. Miwa, eds.), World Scientific, Singapore (1983), pp. 39–2

    Google Scholar 

  7. M. Jimbo and T. Miwa, Publ. Res. Inst. Math. Sci., Kyoto Univ., 19, 943–1001 (1983).

    MathSciNet  MATH  Google Scholar 

  8. J. Wess and B. Zumino, Phys. Lett. B, 37, 95–97 (1971)

    ADS  MathSciNet  Google Scholar 

  9. E. Witten, Nucl. Phys. B, 223, 422–421 (1983)

    ADS  Google Scholar 

  10. E. Witten, Commun. Math. Phys., 92, 455–472 (1984)

    ADS  MATH  Google Scholar 

  11. S. P. Novikov, Sov. Math. Dokl., 24, 222–226 (1981)

    MATH  Google Scholar 

  12. S. P. Novikov, Russ. Math. Surveys, 37, 1–56 (1982).

    ADS  MATH  Google Scholar 

  13. A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov, and S. Shatashvili, Internat. J. Mod. Phys. A, 5, 2495–2589 (1990).

    ADS  MathSciNet  Google Scholar 

  14. A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 10, 2589–2614 (1995); arXiv:hep-th/9405011v1 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  15. S. M. Kharchev, S. M. Khoroshkin, and D. R. Lebedev, Theor. Math. Phys., 104, 879–891 (1995); arXiv:q-alg/9501013v1 (1995)

    MathSciNet  MATH  Google Scholar 

  16. A. D. Mironov, Theor. Math. Phys., 114, 127–183 (1998)

    MathSciNet  MATH  Google Scholar 

  17. A. Mironov, “Quantum deformations of t -functions, bilinear identities, and representation theory,” in: Symmetries and Integrability of Difference Equations (CRM Proc. Lect. Notes, Vol. 9, D. Levi, L. Vinet, and P. Winternitz, eds.), Amer. Math. Soc., Providence, R. I. (1996), pp. 219–2; arXiv:hep-th/9409190v2 (1994).

    MathSciNet  Google Scholar 

  18. S.-S. Chern and J. Simons, Ann. Math. (2), 99, 48–69 (1974).

    MathSciNet  MATH  Google Scholar 

  19. E. Witten, Commun. Math. Phys., 121, 351–399 (1989).

    ADS  MATH  Google Scholar 

  20. E. Guadagnini, M. Martellini, and M. Mintchev, “Chern–Simons field theory and quantum groups,” in: Quantum Groups (Lect. Notes Phys., Vol. 370, H.-D. Doebner and J.-D. Hennig, eds.), Springer, Berlin, pp. 307–2

  21. E. Guadagnini, M. Martellini, and M. Mintchev, Phys. Lett. B, 235, 275–281 (1990)

    ADS  MathSciNet  Google Scholar 

  22. N. Yu. Reshetikhin and V. G. Turaev, Commun. Math. Phys., 127, 1–26 (1990).

    ADS  Google Scholar 

  23. P. Ramadevi, T. R. Govindarajan, and R. K. Kaul, Nucl. Phys. B, 402, 548–566 (1993); arXiv:hep-th/9212110v1 (1992)

    ADS  MathSciNet  Google Scholar 

  24. P. Ramadevi, T. R. Govindarajan, and R. K. Kaul, Nucl. Phys. B, 422, 291–306 (1994); arXiv:hep-th/9312215v1 (1993).

    ADS  MathSciNet  MATH  Google Scholar 

  25. A. Morozov and A. Smirnov, Nucl. Phys. B, 835, 284–313 (2010); arXiv:1001.2003v2 [hep-th] (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  26. A. Mironov, A. Morozov, and And. Morozov, “Character expansion for HOMFLY polynomials: I. Integrability and difference equations,” in: Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer (A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, and E. Scheidegger, eds.), World Scientific, Singapore (2013), pp. 101–2; arXiv:1112.5754v1 [hep-th] (2011)

    Google Scholar 

  27. A. Mironov, A. Morozov, and And. Morozov, JHEP, 1203, 034 (2012); arXiv:1112.2654v2 [math.QA] (2011).

    ADS  MathSciNet  Google Scholar 

  28. M. Atiyah, The Geometry and Physics of Knots, Cambridge Univ. Press, tCambridge (1990).

    MATH  Google Scholar 

  29. L. Alday, D. Gaiotto, and Y. Tachikawa, Lett. Math. Phys., 91, 167–197 (2010); arXiv:0906.3219v2 [hep-th] (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  30. N. Wyllard, JHEP, 0911, 002 (2009); arXiv:0907.2189v2 [hep-th] (2009).

    ADS  MathSciNet  Google Scholar 

  31. A. Mironov and A. Morozov, Nucl. Phys. B, 825, 1–37 (2009); arXiv:0908.2569v2 [hep-th] (2009).

    ADS  MathSciNet  Google Scholar 

  32. R. Dijkgraaf and C. Vafa, “Toda Theories, matrix models, topological strings, and N=2 gauge systems,” arXiv:0909.2453v1 [hep-th] (2009)

    Google Scholar 

  33. T. Eguchi and K. Maruyoshi, “Penner type matrix model and Seiberg–Witten theory,” arXiv:0911.4797v3 [hep-th] (2009)

    Google Scholar 

  34. T. Eguchi and K. Maruyoshi, JHEP, 1002, 022 (2010); arXiv:1006.0828v2 [hep-th] (2010)

    ADS  MathSciNet  Google Scholar 

  35. H. Itoyama, K. Maruyoshi, and T. Oota, Prog. Theoret. Phys., 123, 957–987 (2010); arXiv:0911.4244v2 [hep-th] (2009).

    ADS  MATH  Google Scholar 

  36. A. Mironov, A. Morozov, and Sh. Shakirov, JHEP, 1002, 030 (2010); arXiv:0911.5721v2 [hep-th] (2009)

    ADS  MathSciNet  Google Scholar 

  37. A. Mironov, A. Morozov, and Sh. Shakirov, Internat. J. Mod. Phys. A, 25, 3173–3207 (2010); arXiv:1001.0563v2 [hep-th] (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  38. A. Mironov, A. Morozov, and Sh. Shakirov, JHEP, 1103, 102 (2011); arXiv:1011.3481v2 [hep-th] (2010)

    ADS  MathSciNet  Google Scholar 

  39. A. Mironov, Al. Morozov, and And. Morozov, Nucl. Phys. B, 843, 534–557 (2011); arXiv:1003.5752v1 [hep-th] (2010).

    MathSciNet  MATH  Google Scholar 

  40. A. Mironov, A. Morozov, and Sh. Shakirov, JHEP, 1102, 067 (2011); arXiv:1012.3137v1 [hep-th] (010).

    ADS  MathSciNet  Google Scholar 

  41. V. A. Alba, V. A. Fateev, A. V. Litvinov, and G. M. Tarnopolsky, Lett. Math. Phys., 98, 33–64 (2011); arXiv:1012.13122v4 [hep-th] (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  42. A. Belavin and V. Belavin, Nucl. Phys. B, 850, 199–213 (2011); arXiv:1102.0343v2 [hep-th] (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  43. S. Mironov, An. Morozov, and Y. Zenkevich, JETP Letters, 99, 109–113 (2014); arXiv:1312.5732v2 [hep-th] (2013)

    ADS  Google Scholar 

  44. Y. Matsuo, C. Rim, and H. Zhang, JHEP, 1409, 028 (2014); arXiv:1405.3141v2 [hep-th] (2014).

    ADS  Google Scholar 

  45. H. Awata and Y. Yamada, JHEP, 1001, 125 (2010); arXiv:0910.4431v3 [hep-th] (2009)

    ADS  MathSciNet  Google Scholar 

  46. H. Awata and Y. Yamada, Prog. Theoret. Phys., 124, 227–262 (2010); arXiv:1004.5122v2 [hep-th] (2010)

    ADS  MATH  Google Scholar 

  47. S. Yanagida, J. Math. Phys., 51, 123506 (2010); arXiv:1005.0216v2 [math.QA] (2010).

    ADS  MathSciNet  Google Scholar 

  48. A. Mironov, A. Morozov, Sh. Shakirov, and A. Smirnov, Nucl. Phys. B, 855, 128–151 (2012); arXiv:1105.0948v1 [hep-th] (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  49. H. Itoyama, T. Oota, and R. Yoshioka, Nucl. Phys. B, 877, 506–537 (2013); arXiv:1308.2068v3 [hep-th] (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  50. A. Losev, N. Nekrasov, and S. Shatashvili, Nucl. Phys. B, 534, 549–611 (1998); arXiv:hep-th/9711108v2 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  51. A. Losev, N. Nekrasov, and S. Shatashvili, “Testing Seiberg–Witten solution,” in: L. D. Faddeev’s Seminar on Mathematical Physics (Transl. Amer. Math. Soc. Ser. 2, Vol. 201, M. Semenov-Tian-Shansky, ed.), Amer. Math. Soc., Providence, R. I. (2000), pp. 123–2; arXiv:hep-th/9801061v1 (1998)

    MathSciNet  Google Scholar 

  52. G. Moore, N. Nekrasov, and S. Shatashvili, Commun. Math. Phys., 209, 77–95 (2000); arXiv:hep-th/9803265v3 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  53. G. Moore, N. Nekrasov, and S. Shatashvili, Commun. Math. Phys., 209, 97–121 (2000); arXiv:hep-th/9712241v2 (1997).

    ADS  MathSciNet  MATH  Google Scholar 

  54. N. Nekrasov, Adv. Theoret. Math. Phys., 7, 831–864 (2004)

    MathSciNet  Google Scholar 

  55. R. Flume and R. Pogossian, Internat. J. Mod. Phys. A, 18, 2541–2563 (2003); arXiv:hep-th/0208176v2 (2002)

    ADS  MATH  Google Scholar 

  56. N. Nekrasov and A. Okounkov, “Seiberg–Witten theory and random partitions,” in: The Unity of Mathematics (Progr. Math., Vol. 244, P. Etingof, V. Retakh, and I. M. Singer, eds.), Birkhäuser, Boston, Mass. (2006), pp. 525–2; arXiv:hep-th/0306238v2 (2003).

    MathSciNet  Google Scholar 

  57. V. Pestun, JHEP, 1212, 067 (2012); arXiv:0906.0638v3 [hep-th] (2009).

    ADS  MathSciNet  Google Scholar 

  58. A. Mironov and A. Morozov, Phys. Lett. B, 680, 188–194 (2009); arXiv:0908.2190v1 [hep-th] (2009).

    ADS  MathSciNet  Google Scholar 

  59. M. Bershtein and O. Foda, JHEP, 1406, 177 (2014); arXiv:1404.7075v3 [hep-th] (2014)

    ADS  MathSciNet  Google Scholar 

  60. K. B. Alkalaev and V. A. Belavin, “Conformal blocks of WN minimal models and AGT correspondence,” arXiv:1404.7094v3 [hep-th] (2014).

  61. Al. B. Zamolodchikov, Soviet Phys. JETP, 63, 1061–1066 (1986)

    MathSciNet  Google Scholar 

  62. Al. B. Zamolodchikov, Theor. Math. Phys., 73, 1088–1093 (1987).

    MathSciNet  Google Scholar 

  63. A. Marshakov, A. Mironov, and A. Morozov, JHEP, 0911, 048 (2009); arXiv:0909.3338v3 [hep-th] (2009).

    ADS  MathSciNet  Google Scholar 

  64. R. Poghossian, JHEP, 0912, 038 (2009); arXiv:0909.3412v2 [hep-th] (2009).

    ADS  MathSciNet  Google Scholar 

  65. Al. Zamolodchikov, Commun. Math. Phys., 96, 419–422 (1984).

    ADS  MathSciNet  Google Scholar 

  66. Al. Zamolodchikov, Nucl. Phys. B, 285, 481–503 (1987).

    ADS  MathSciNet  Google Scholar 

  67. G. V. Belyi, Math. USSR-Izv., 14, 247–256 (1980)

    MathSciNet  MATH  Google Scholar 

  68. A. Grothendieck, “Esquisse d’un programme,” in: Geometric Galois Action (London Math. Soc. Lect. Note Ser., Vol. 242, L. Schneps and P. Lochak, eds.), Vol. 1, Around Grothendieck’s Esquisse d’un Programme, Cambridge Univ. Press, Cambridge (1997), pp. 5–2.

    Google Scholar 

  69. D. Friedan and S. Shenker, Phys. Lett. B, 175, 287–296 (1986)

    ADS  MathSciNet  Google Scholar 

  70. N. Ishibashi, Y. Matsuo, and H. Ooguri, Modern Phys. Lett. A, 2, 119–132 (1987)

    ADS  MathSciNet  Google Scholar 

  71. L. Alvarez-Gaume, C. Gomez, and C. Reina, Phys. Lett. B, 190, 55–62 (1987)

    ADS  MathSciNet  Google Scholar 

  72. E. Witten, Commun. Math. Phys., 113, 529–600 (1988)

    ADS  Google Scholar 

  73. A. Morozov, Phys. Lett. B, 196, 325–328 (1987).

    ADS  MathSciNet  Google Scholar 

  74. A. Levin and A. Morozov, Phys. Lett. B, 243, 207–214 (1990).

    ADS  MathSciNet  Google Scholar 

  75. A. D. Mironov, A. Yu. Morozov, and S. M. Natanzon, Theor. Math. Phys., 166, 1–22 (2011); arXiv:0904.4227v2 [hep-th] (2009)

    MATH  Google Scholar 

  76. A. D. Mironov, A. Yu. Morozov, and S. M. Natanzon, J. Geom. Phys., 62, 148–155 (2012); arXiv:1012.0433v1 [math.GT] (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  77. S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 10, 2015–2051 (1995); arXiv:hep-th/9312210v1 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  78. A. Yu. Orlov and D. M. Shcherbin, Theor. Math. Phys., 128, 906–926 (2001)

    Google Scholar 

  79. A. Yu. Orlov, Theor. Math. Phys., 146, 183–206 (2006)

    Google Scholar 

  80. A. Alexandrov, A. Mironov, A. Morozov, and S. Natanzon, J. Phys. A: Math. Theor., 45, 045209 (2012); arXiv:1103.4100v1 [hep-th] (2011).

    ADS  MathSciNet  Google Scholar 

  81. A. Alexandrov, A. Mironov, A. Morozov, and S. Natanzon, JHEP, 1411, 080 (2014); arXiv:1405.1395v3 [hep-th] (2014).

    ADS  MathSciNet  Google Scholar 

  82. N. Nemkov, “On fusion kernel in Liouville theory,” arXiv:1409.3537v2 [hep-th] (2014).

    Google Scholar 

  83. Al. Zamolodchikov, Private communication.

  84. B. Ponsot and J. Teschner, “Liouville bootstrap via harmonic analysis on a noncompact quantum group,” arXiv:hep-th/9911110v2 (1999)

  85. B. Ponsot and J. Teschner, Commun. Math. Phys., 224, 613–655 (2001); arXiv:math/0007097v2 (2000).

    ADS  MathSciNet  Google Scholar 

  86. V. G. Knizhnik and A. Yu. Morozov, JETP Lett., 39, 240–243 (1984)

    ADS  Google Scholar 

  87. H. Levine and S. Libby, Phys. Lett. B, 150, 182–186 (1985).

    ADS  Google Scholar 

  88. N. Seiberg and E. Witten, Nucl. Phys. B, 426, 19–52 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  89. N. Seiberg and E. Witten, Erratum, 430, 485–486 (1994); arXiv:hep-th/9407087v1 (1994)

    MathSciNet  MATH  Google Scholar 

  90. N. Seiberg and E. Witten, Erratum, 431, 484–550 (1994); arXiv:hep-th/9408099v1 (1994).

    MathSciNet  MATH  Google Scholar 

  91. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 355, 466–477 (1995); arXiv:hep-th/9505035v2 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  92. R. Donagi and E. Witten, Nucl. Phys. B, 460, 299–334 (1996); arXiv:hep-th/9510101v2 (1995).

    ADS  MathSciNet  MATH  Google Scholar 

  93. H. Itoyama and A. Morozov, Nucl. Phys. B, 477, 855–877 (1996); arXiv:hep-th/9511126v2 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  94. H. Itoyama and A. Morozov, Nucl. Phys. B, 491, 529–573 (1997); arXiv:v1 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  95. H. Itoyama and A. Morozov, “Integrability and Seiberg–Witten theory,” in: Frontiers in Quantum Field Theory (H. Itoyama, H. Kunitomo, H. Shirokura, and M. Niuomiya, eds.), World Scientific, Singapore (1996), pp. 301–2; arXiv:hep-th/9601168v1 (1996)

    Google Scholar 

  96. A. Gorsky and A. Mironov, “Integrable manybody systems and gauge theories,” in: Integrable Hierarchies and Modern Physical Theories (NATO Sci. Ser., Vol. 18, H. Aratyn and A. S. Sorin, eds.), Kluwer, Dordrecht (2001); arXiv:hep-th/0011197v3 (2000).

  97. Vl. S. Dotsenko and V. A. Fateev, Nucl. Phys. B, 240, 312–348 (1984).

    ADS  MathSciNet  Google Scholar 

  98. B. L. Feigin and D. B. Fuchs, Funct. Anal. Appl., 16, 114–126 (1982).

    MATH  Google Scholar 

  99. M. Wakimoto, Commun. Math. Phys., 104, 605–609 (1986).

    ADS  MathSciNet  MATH  Google Scholar 

  100. P. Zograf, “Enumeration of Grothendieck’s dessins and KP hierarchy,” arXiv:1312.2538v3 [math.CO] (2013).

    Google Scholar 

  101. R. Hirota, Phys. Rev. Lett., 27, 1192–1194 (1971)

    ADS  MATH  Google Scholar 

  102. Y. Ohta, J. Satsuma, D. Takahashi, and T. Tokihiro, Prog. Theoret. Phys. Suppl., 94, 210–241 (1988).

    ADS  MathSciNet  Google Scholar 

  103. G. Moore and N. Seiberg, Phys. Lett. B, 220, 422–430 (1989).

    ADS  MathSciNet  Google Scholar 

  104. A. V. Marshakov, A. D. Mironov, and A. Yu. Morozov, Theor. Math. Phys., 164, 831–852 (2010); arXiv:0907.3946v2 [hep-th] (2009).

    MATH  Google Scholar 

  105. A. D. Mironov, S. A. Mironov, A. Yu. Morozov, and A. A. Morozov, Theor. Math. Phys., 165, 1662–1698 (2010); arXiv:0908.2064v2 [hep-th] (2009).

    MATH  Google Scholar 

  106. K. W. J. Kadell, Compositio Math., 87, 5–43 (1993); Adv. Math., 130, 332–102 (1997); J. Kaneko, SIAM J. Math. Anal., 24, 10862–1110 (1993).

    MathSciNet  MATH  Google Scholar 

  107. H. Itoyama and T. Oota, Nucl. Phys. B, 838, 298–330 (2010); arXiv:1003.2929v2 [hep-th] (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  108. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and S. Pakuliak, Nucl. Phys. B, 404, 717–750 (1993); arXiv:hep-th/9208044v1 (1992); A. Mironov and S. Pakuliak, Internat. J. Mod. Phys. A, 8, 3107–3137 (1993); arXiv:hep-th/9209100v1 (1992); H. Awata, Y. Matsuo, S. Odake, and J. Shiraishi, Soryushiron Kenkyu, 91, A692–A75 (1995); arXiv:hep-th/9503028v2 (1995).

    ADS  MathSciNet  MATH  Google Scholar 

  109. D. Galakhov, A. Mironov, and A. Morozov, JHEP, 1406, 050 (2014); arXiv:1311.7069v1 [hep-th] (2013).

    ADS  Google Scholar 

  110. N. Iorgov, O. Lisovyy, and Yu. Tykhyy, JHEP, 1312, 029 (2013); arXiv:1308.4092v2 [hep-th] (2013).

    ADS  MathSciNet  Google Scholar 

  111. D. Galakhov, A. Mironov, and A. Morozov, JHEP, 1208, 067 (2012); arXiv:1205.4998v1 [hep-th] (2012); N. Nemkov, J. Phys. A: Math. Theor., 47, 105401 (2014); arXiv:1307.0773v2 [hep-th] (2013); M. Billo, M. Frau, L. Gallot, A. Lerda, and I. Pesando, JHEP, 1304, 039 (2013); arXiv:1302.0686v1 [hep-th] (2013); JHEP, 1311, 123 (2013); arXiv:1307.6648v2 [hep-th] (2013); JHEP, 1312, 029 (2013); arXiv:1308.4092v2 [hep-th] (2013).

    ADS  MathSciNet  Google Scholar 

  112. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Acad. Press, New York (1980).

    Google Scholar 

  113. A. Marshakov, A. Mironov, and A. Morozov, J. Geom. Phys., 61, 1203–1222 (2011); arXiv:1011.4491v1 [hep-th] (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  114. A. Alexandrov, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 21, 2481–2517 (2006); arXiv:hep-th/ 0412099v1 (2004); Fortsch. Phys., 53, 5122–521 (2005); arXiv:hep-th/0412205v1 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Itoyama.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 1, pp. 3–40, July, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoyama, H., Mironov, A.D. & Morozov, A.Y. Matching branches of a nonperturbative conformal block at its singularity divisor. Theor Math Phys 184, 891–923 (2015). https://doi.org/10.1007/s11232-015-0305-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0305-z

Keywords

Navigation