Skip to main content
Log in

Bigravity in the Kuchař Hamiltonian formalism: The general case

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop the Hamiltonian formalism of bigravity and bimetric theories for the general form of the interaction potential of two metrics. When studying the role of lapse and shift functions in theories with two metrics, we naturally use the Kuchař formalism in which these functions are independent of the choice of the space-time coordinate system. We find conditions on the potential necessary and sufficient for the existence of four first-class constraints. These constraints realize a well-known hypersurface deformation algebra in the framework of the formalism of Dirac brackets constructed on the base of all second-class constraints. Fixing one of the metrics, we obtain a bimetric theory not containing first-class constraints. Conserved quantities corresponding to symmetries of the background metric can then be expressed ultralocally in terms of the metric interaction potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Damour and I. Kogan, Phys. Rev. D, 66, 104024 (2002); arXiv:hep-th/0206042v2 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Rosen, Phys. Rev., 57, 147–150, 150–153 (1940); Ann. Phys., 22, 1–11 (1963); Gen. Rel. Grav., 4, 435–447 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  3. G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava, and A. J. Tolley, Phys. Rev. D, 84, 124046; arXiv:1108.5231v1 [hep-th] (2011).

    Article  ADS  Google Scholar 

  4. C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev. Lett., 106, 231101 (2011); arXiv:1011.1232v2 [hep-th] (2010); Phys. Lett. B, 711, 190–195 (2012); arXiv:1107.3820v1 [hep-th] (2011).

    Article  ADS  Google Scholar 

  5. S. F. Hassan and R. A. Rosen, Phys. Rev. Lett., 108, 041101 (2012); arXiv:1106.3344v3 [hep-th] (2011); S. F. Hassan, R. A. Rosen, and A. Schmidt-May, JHEP, 1202, 026 (2012); arXiv:1109.3230v2 [hep-th] (2011); S. F. Hassan and R. A. Rosen, JHEP, 1202, 126 (2012); arXiv:1109.3515v2 [hep-th] (2011); 1204, 123 (2012); arXiv:1111.2070v1 [hep-th] (2011).

    Article  ADS  Google Scholar 

  6. R. Arnowitt, S. Deser, and Ch. W. Misner, “The dynamics of general relativity,” in: Gravitation: An introduction to Current Research (L. Witten, ed.), Wiley, New York (1962), pp. 227–265; arXiv:gr-qc/0405109v1 (2004).

    Google Scholar 

  7. K. Kuchař, J. Math. Phys., 17, 777–791, 792–800, 801–820 (1976); 18, 1589–1597 (1977).

    Article  ADS  Google Scholar 

  8. V. O. Solov’ev, Soviet J. Part. Nucl., 19, 482–497 (1988).

    Google Scholar 

  9. P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Grad. Sch. Sci. Monogr. Ser., Vol. 2), Belfer Graduate School of Science, New York (1964).

    Google Scholar 

  10. D. G. Boulware and S. Deser, Phys. Rev. D, 6, 3368–3382 (1972).

    Article  ADS  Google Scholar 

  11. V. A. Rubakov and P. G. Tinyakov, Phys. Usp., 51, 759–792 (2008).

    Article  ADS  Google Scholar 

  12. D. Blas, “Aspects of infrared modifications of gravity,” arXiv:0809.3744v1 [hep-th] (2008).

    Google Scholar 

  13. A. Mironov, S. Mironov, A. Morozov, and A. Morozov, “Resolving puzzles of massive gravity with and without violation of Lorentz symmetry,” arXiv:0910.5243v1 [hep-ph] (2009); “Linearized Lorentz-violating gravity and discriminant locus in the moduli space of mass terms,” arXiv:0910.5245v1 [hep-th] (2009).

    Google Scholar 

  14. K. Hinterbichler, Rev. Modern Phys., 84, 671–710 (2012); arXiv:1105.3735v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  15. C. J. Isham, A. Salam, and J. Strathdee, Phys. Lett. B, 31, 300–302 (1970); Phys. Rev. D, 3, 867–873 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Kluson, “Hamiltonian formalism of particular bimetric gravity model,” arXiv:1211.6267v1 [hep-th] (2012).

    Google Scholar 

  17. J. Kluson, “Hamiltonian Formalism of general bimetric gravity,” arXiv:1303.1652v2 [hep-th] (2013).

    Google Scholar 

  18. V. O. Soloviev and M. V. Tchichikina, “Bigravity in Kuchar’s Hamiltonian formalism: 2. The special case,” arXiv:1302.5096v5 [hep-th] (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Soloviev.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 176, No. 3, pp. 393–407, September 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soloviev, V.O., Chichikina, M.V. Bigravity in the Kuchař Hamiltonian formalism: The general case. Theor Math Phys 176, 1163–1175 (2013). https://doi.org/10.1007/s11232-013-0097-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0097-y

Keywords

Navigation