Skip to main content
Log in

Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive formulas for the transverse electrical conductivity and the permittivity in a quantum collisional plasma using the kinetic equation for the density matrix in the relaxation approximation in the momentum space. We show that the derived formula becomes the classical formula when the Planck constant tends to zero and that when the electron collision rate tends to zero (i.e., the plasma becomes collisionless), the derived formulas become the previously obtained Lindhard formulas. We also show that when the wave number tends to zero, the quantum conductivity becomes classical. We compare the obtained conductivity with the conductivity obtained by Lindhard and with the classical conductivity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Mermin, Phys. Rev. B, 1, 2362–2363 (1970).

    Article  ADS  Google Scholar 

  2. J. Lindhard, Danske Vid. Selsk. Mat.-Fys. Medd., 28, 1–57 (1954).

    MathSciNet  Google Scholar 

  3. K. L. Kliewer and R. Fuchs, Phys. Rev., 181, 552–558 (1969).

    Article  ADS  Google Scholar 

  4. M. Dressel and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge Univ. Press, Cambridge (2003).

    Google Scholar 

  5. A. P. van Gelder, Phys. Rev., 187, 833–842 (1969).

    Article  ADS  Google Scholar 

  6. D. C. Mattis and J. Bardeen, Phys. Rev., 111, 412–417 (1958).

    Article  ADS  MATH  Google Scholar 

  7. N. A. Zimbovskaya, Phys. Usp., 54, 769–798 (2011).

    Article  ADS  Google Scholar 

  8. W. E. Jones, K. L. Kliewer, and R. Fuchs, Phys. Rev., 178, 1201–1203 (1969).

    Article  ADS  Google Scholar 

  9. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep. Prog. Phys., 70, 1–87 (2007); arXiv: cond-mat/0611257v1 (2006).

    Article  ADS  Google Scholar 

  10. J. E. Valdes, P. Vargas, and N. R. Arista, Nucl. Instrum. Meth. Phys. Res. B, 174, 9–15 (2001).

    Article  ADS  Google Scholar 

  11. D. Anderson, B. Hall, M. Lisak, and M. Marklund, Phys. Rev. E, 65, 046417 (2002); arXiv:quant-ph/0305102v1 (2003).

    Article  ADS  Google Scholar 

  12. P. K. Shukla and B. Eliasson, Phys. Usp., 53, 51–76 (2010).

    Article  ADS  Google Scholar 

  13. B. Eliasson and P. K. Shukla, J. Plasma Phys., 76, 7–17 (2010); arXiv:0911.4594v1 [physics.plasm-ph] (2009).

    Article  ADS  Google Scholar 

  14. A. Wierling, “Interpolation between static local field corrections and the Drude model by a generalized Mermin approach,” arXiv:0812.3835v1 [physics.plasm-ph] (2008).

    Google Scholar 

  15. G. Brodin, M. Marklund, and G. Manfredi, Phys. Rev. Lett., 100, 175001 (2008); arXiv:0802.0169v1 [quant-ph] (2008).

    Article  ADS  Google Scholar 

  16. G. Manfredi and F. Haas, Phys. Rev. B, 64, 075316 (2001); arXiv:cond-mat/0203394v1 (2002).

    Article  ADS  Google Scholar 

  17. G. Manfredi, “How to model quantum plasmas,” in: Topics in Kinetic Theory (Fields Inst. Commun., Vol. 46, T. Passot, C. Sulem, and P. L. Sulem, eds.), Amer. Math. Soc., Providence, R. I. (2005), pp. 263–287; arXiv:quant-ph/0505004v1 (2005).

    Google Scholar 

  18. H. Reinholz and G. Röpke, Phys. Rev. E, 85, 036401 (2012).

    Article  ADS  Google Scholar 

  19. D. Peins and P. Nozières, The Theory of Quantum Liquids, Vol. 1, Normal Fermi Liquids, Benjamin, New York (1966).

    Google Scholar 

  20. P. C. Martin, Phys. Rev., 161, 143–155 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Latyshev.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 175, No. 1, pp. 132–143, April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latyshev, A.V., Yushkanov, A.A. Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach. Theor Math Phys 175, 559–569 (2013). https://doi.org/10.1007/s11232-013-0044-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0044-y

Keywords

Navigation