Skip to main content
Log in

Pauli theorem in the description of n-dimensional spinors in the Clifford algebra formalism

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss a generalized Pauli theorem and its possible applications for describing n-dimensional (Dirac, Weyl, Majorana, and Majorana-Weyl) spinors in the Clifford algebra formalism. We give the explicit form of elements that realize generalizations of Dirac, charge, and Majorana conjugations in the case of arbitrary space dimensions and signatures, using the notion of the Clifford algebra additional signature to describe conjugations. We show that the additional signature can take only certain values despite its dependence on the matrix representation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Pauli, Ann. Inst. H. Poincaré, 6, 109–136 (1936).

    MathSciNet  Google Scholar 

  2. N. N. Bogolyubov and D. V. Shirkov, Quantum Fields [in Russian], Nauka, Moscow (1980); English transl., Wiley, New York (1980).

    MATH  Google Scholar 

  3. N. N. Bogolubov, A. A. Logunov, A. I. Oksak, and A. I. Todorov, General Principles of Quantum Field Theory [in Russian], Nauka, Moscow (1987); English transl. (Math. Phys. Appl. Math., Vol. 10), Kluwer, Dordrecht (1990).

    Google Scholar 

  4. M. A. Naimark and A. I. Stern, Theory of Group Representations (Grundlehren Math. Wiss., Vol. 246), Springer, Berlin (1982).

    Book  MATH  Google Scholar 

  5. P. C. West, “Supergravity, brane dynamics, and string duality,” in: Duality and Supersymmetric Theories (D. I. Olive and P. C. West, eds.), Cambridge Univ. Press, Cambridge (1999), pp. 147–266; arXiv:hep-th/9811101v1 (1998).

    Google Scholar 

  6. Y. Tanii, “Introduction to supergravities in diverse dimensions,” arXiv:hep-th/9802138v1 (1998).

    Google Scholar 

  7. J. Scherk, “Extended supersymmetry and extended supergravity theories,” in: Recent Developments in Gravitation Cargèse 1978 (M. Lévy and S. Deser, eds.), Plenum, N. Y. (1978), pp. 479–517.

    Google Scholar 

  8. T. Kugo and P. Townsend, Nucl. Phys. B, 221, 357–380 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  9. F. Gliozzi, J. Sherk, and D. Olive, Nucl. Phys. B, 122, 253–290 (1977).

    Article  ADS  Google Scholar 

  10. B. DeWitt, Supermanifolds, Cambridge Univ. Press, Cambridge (1984).

    MATH  Google Scholar 

  11. I. Ya. Aref’eva and I. V. Volovich, Sov. Phys. Usp., 28, 694–708 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  12. V. S. Vladimirov and I. V. Volovich, Theor. Math. Phys., 59, 317–335 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. S. Vladimirov and I. V. Volovich, Theor. Math. Phys., 60, 743–765 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Strathdee, Internat. J. Mod. Phys. A, 2, 273–300 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. P. G. O. Freund, Introduction to Supersymmetry, Springer, Berlin (1986).

    Book  MATH  Google Scholar 

  16. P. West, Introduction to Supersymmetry and Supergravity, World Scientific, Singapore (1990).

    MATH  Google Scholar 

  17. A. V. Galazhinskii, Introduction to Supersymmetry [in Russian], Tomsk Polytech. Univ. Press, Tomsk (2008).

    Google Scholar 

  18. M. Rausch de Traubenberg, “Clifford algebras in physics,” in: Lectures of the 7th International Conference on Clifford Algebras and their Applications — ICCA-7 (Toulouse, France, 19–29 May 2005), Institut de Mathématiques de Toulouse, Toulouse (2005); arXiv:hep-th/0506011v1 (2005).

    Google Scholar 

  19. F. Quevedo, “Cambridge lectures on supersymmetry and extra dimensions,” arXiv:1011.1491v1 [hep-th] (2010).

    Google Scholar 

  20. D. S. Shirokov, Dokl. Math., 84, 699–701 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  21. N. G. Marchuk and D. S. Shirokov, “Local generalized Pauli’s theorem,” arXiv:1201.4985v1 [math-ph] (2012).

    Google Scholar 

  22. W. K. Clifford, Amer. J. Math., 1, 350–358 (1878).

    Article  MathSciNet  Google Scholar 

  23. H. Grassmann, Die Lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, Verlag von Otto Wigand, Leipzig (1844).

    Google Scholar 

  24. W. R. Hamilton, Philos. Mag., 25, 489–495 (1844).

    Google Scholar 

  25. C. Chevalley, Collected Works, Vol. 2, The Algebraic Theory of Spinors and Clifford Algebras, Springer, Berlin (1997).

    Google Scholar 

  26. M. Riesz, “Sur certaines notions fondamentales en théorie quantique relativiste,” in: C. R. Dixième Congrès Math. Scandinaves (Gjellerups Forlag, Copenhagen, July 1946), Jul. Gjellerups Forlag, Copenhagen (1947), pp. 123–148; “L’équation de Dirac en relativité générale,” in: Collected Papers (L. GÅrding and L. Hörmander, eds.), Springer, Berlin (1988), pp. 814–832.

    Google Scholar 

  27. P. A. M. Dirac, Proc. Roy. Soc. London A, 117, 610–624 (1928).

    Article  ADS  MATH  Google Scholar 

  28. D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for Mathematical Physics, Reidel, Dordrecht (1984).

    Google Scholar 

  29. N. G. Marchuk, Equations of Field Theory and Clifford Algebras, RKhD, Izhevsk (2009).

    Google Scholar 

  30. P. Lounesto, Clifford Algebras and Spinors (London Math. Soc. Lect. Note Ser., Vol. 286), Cambridge Univ. Press, Cambridge (2001).

    Book  MATH  Google Scholar 

  31. G. Juvet, Comment. Math. Helv., 2, 225–235 (1930).

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Sauter, Z. Phys., 63, 803–814 (1930); 64, 295–303 (1930).

    Article  ADS  MATH  Google Scholar 

  33. I. M. Benn and R. W. Tucker, An Introduction to Spinors and Geometry with Applications in Physics, Adam Hilger, Bristol (1987).

    Google Scholar 

  34. P. K. Rashensky, Sov. Math. Surveys, 10, 3–110 (1955).

    Google Scholar 

  35. Yu. B. Rumer, Spinor Analysis [in Russian], ONTI, Moscow (1936).

    Google Scholar 

  36. N. G. Marchuk and D. S. Shirokov, Adv. Appl. Clifford Algebr., 18, 237–254 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  37. D. S. Shirokov, “Concepts of trace, determinant, and inverse of Clifford algebra elements,” arXiv:1108.5447v1 [math-ph] (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Shirokov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 175, No. 1, pp. 11–34, April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirokov, D.S. Pauli theorem in the description of n-dimensional spinors in the Clifford algebra formalism. Theor Math Phys 175, 454–474 (2013). https://doi.org/10.1007/s11232-013-0038-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0038-9

Keywords

Navigation