Skip to main content
Log in

Wigner functions for the Landau problem in noncommutative quantum mechanics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Wigner function in noncommutative quantum mechanics. By solving the time-independent Schrödinger equation on both a noncommutative space and a noncommutative phase space, we obtain the Wigner function for the Landau problem on those spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Chaichian, M. M. Sheikh-Jabbari, and A. Tureanu, Phys. Rev. Lett., 86, 2716–2719 (2001); arXiv:hep-th/0010175v2 (2000); M. Chaichian, A. Demichev, P. Prešnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Nucl. Phys. B, 611, 383–402 (2001); arXiv:hep-th/0101209v2 (2001).

    Article  ADS  Google Scholar 

  2. M. Chaichian, P. Prešnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Phys. Lett. B, 527, 149–154 (2002); arXiv:hep-th/0012175v2 (2000); H. Falomir, J. Gamboa, M. Loewe, F. Mendez, and J. C. Rojas, Phys. Rev. D, 66, 045018 (2002); arXiv:hep-th/0203260v3 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. K. Li and S. Dulat, Eur. Phys. J. C, 46, 825–828 (2006); arXiv:hep-th/0508193v3 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. B. Mirza and M. Zarei, Eur. Phys. J. C, 32, 583–586 (2004); arXiv:hep-th/0311222v1 (2003); K. Li and J. Wang, Eur. Phys. J. C, 50, 1007–1011 (2007); arXiv:hep-th/0608100v1 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. B. Mirza, R. Narimani, and M. Zarei, Eur. Phys. J. C, 48, 641–645 (2006); arXiv:hep-th/0610323v1 (2006); S. Dulat and K. Li, Eur. Phys. J. C, 54, 333–337 (2008); arXiv:0802.1243v1 [math-ph] (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. J. Gamboa, F. Méndez, M. Loewe, and J. C. Rojas, Modern Phys. Lett. A, 16, 2075–2078 (2001); arXiv:hep-th/0104224v4 (2001); P. A. Horváthy, Ann. Phys., 299, 128–140 (2002); arXiv:hep-th/0201007v4 (2002); Ö. F. Dayi and L. T. Kelleyane, Modern Phys. Lett. A, 17, 1937–1944 (2002); arXiv:hep-th/0202062v1 (2002); S. Dulat and K. Li, Chin. Phys. C, 32, 92–95 (2008); P. R. Giri and P. Roy, Eur. Phys. J. C, 57, 835–839 (2008); arXiv:0803.4090v2 [hep-th] (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. J. Wang and K. Li, J. Phys. A, 40, 2197–2202 (2007); arXiv:0708.0783v1 [hep-th] (2007); S. Dulat, K. Li, and J. Wang, J. Phys. A, 41, 065303 (2008); arXiv:0802.1116v1 [math-ph] (2008); Chin. Phys. B, 17, 1716–1719 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Ö. F. Dayi and A. Jellal, J. Math. Phys., 43, 4592–4601 (2002); Erratum, 45, 827 (2004); arXiv:hep-th/0111267v2 (2001); A. Kokado, T. Okamura, and T. Saito, “Hall effect in Noncommutative spaces,” arXiv:hep-th/0307120v2 (2003); B. Basu and S. Ghosh, Phys. Lett. A, 346, 133–140 (2005); arXiv:cond-mat/0503266v3 (2005); B. Harms and O. Micu, J. Phys. A, 40, 10337–10347 (2007); arXiv:hep-th/0610081v3 (2006); A. L. Carey, K. Hannabuss, and V. Mathai, J. Geom. Symmetry Phys., 6, 16–37 (2006); arXiv:math/0008115v2 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Dulat and K. Li, Eur. Phys. J. C, 60, 163–168 (2009); arXiv:0802.1118v1 [math-ph] (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. Demetrian and D. Kochan, Acta Phys. Slovaca, 52, 1–9 (2002); arXiv:hep-th/0102050v2 (2001); J.-Z. Zhang, Phys. Lett. B, 584, 204–209 (2004); arXiv:hep-th/0405135v1 (2004).

    Google Scholar 

  11. K. Li, J. Wang, and C. Chen, Modern Phys. Lett. A, 20, 2165–2174 (2005); arXiv:hep-th/0409234v2 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. T. Heng, B. Lin, and S. Jing, Chin. Phys. Lett., 27, 090302 (2010).

    Article  ADS  Google Scholar 

  13. Ö. F. Dayi, and L. T. Kelleyane, Modern Phys. Lett. A, 17, 1937–1944 (2002); arXiv:hep-th/0202062v1 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. K. Li, J. Wang, S. Dulat, and K. Ma, Internat. J. Theoret. Phys., 49, 134–143 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. J. Wang, K. Li, and S. Dulat, “Wigner functions for harmonic oscillator in noncommutative phase space,” arXiv:0908.1703v1 [hep-th] (2009).

  16. E. Wigner, Phys. Rev., 40, 749–759 (1932).

    Article  ADS  MATH  Google Scholar 

  17. J. E. Moyal, Proc. Cambridge Philos. Soc., 45, 99–124 (1949).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. D. B. Fairlie and C. A. Manogue, J. Phys. A, 24, 3807–3815 (1991); T. Curtright, D. Fairlie, and C. Zachos, Phys. Rev. D, 58, 025002 (1998); arXiv:hep-th/9711183v3 (1997); C. Zachos, Internat. J. Modern Phys. A, 17, 297–316 (2002); arXiv:hep-th/0110114v3 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulat, S., Li, K. & Wang, J. Wigner functions for the Landau problem in noncommutative quantum mechanics. Theor Math Phys 167, 628–635 (2011). https://doi.org/10.1007/s11232-011-0047-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-011-0047-5

Keywords

Navigation