Skip to main content
Log in

The equivalence of different approaches for generating multisoliton solutions of the KPII equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The unexpectedly rich structure of the multisoliton solutions of the KPII equation has previously been explored using different approaches ranging from the dressing method to twisting transformations and the τ-function formulation. All these approaches proved useful for displaying different properties of these solutions and the corresponding Jost solutions. The aim of our investigation is to establish explicit formulas relating all these approaches. We discuss some hidden invariance properties of these multisoliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl., 15, 539–541 (1970).

    MATH  ADS  Google Scholar 

  2. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 8, 226–235 (1974).

    Article  MATH  Google Scholar 

  3. V. S. Dryuma, JETP Lett., 19, No. 12, 387–388 (1974).

    ADS  Google Scholar 

  4. M. J. Ablowitz, D. Bar Yaacov, and A. S. Fokas, Stud. Appl. Math., 69, 135–143 (1983).

    MATH  MathSciNet  Google Scholar 

  5. V. D. Lipovskii, Funct. Anal. Appl., 20, 282–291 (1986).

    Article  MathSciNet  Google Scholar 

  6. M. V. Wickerhauser, Comm. Math. Phys., 108, 67–89 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. G. Grinevich and P. S. Novikov, Funct. Anal. Appl, 22, 19–27 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Satsuma, J. Phys. Soc. Japan, 40, 286–290 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  9. S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, and V. B. Matveev, Phys. Lett. A, 63, 205–206 (1977).

    Article  ADS  Google Scholar 

  10. B. G. Konopel’chenko, Solitons in Multidimensions: Inverse Spectral Transform Method, World Scientific, Singapore (1993).

    Google Scholar 

  11. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).

    MATH  Google Scholar 

  12. N. C. Freeman and J. J. C. Nimmo, Phys Lett. A, 95, 1–3 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  13. J. W. Miles, J. Fluid Mech., 79, 157–169, 171–179 (1977).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. V. E. Zakharov, Radiophysics and Quantum Electronics, 29, 813–817 (1986).

    Article  ADS  Google Scholar 

  15. M. Boiti, F. Pempinelli, B. Prinari, and A. K. Pogrebkov, “Some nondecaying potentials for the heat conduction equation,” in: Proc. Workshop “Nonlinearity, Integrability, and All That: Twenty Years After NEEDS’ 79” (M. Boiti, L. Martina, F. Pempinelli, B. Prinari, and G. Soliani, eds.), World Scientific, Singapore (2000), p. 42–50.

    Google Scholar 

  16. B. Prinari, Inverse Problems, 16, 589–603 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. E. Medina, Lett. Math. Phys., 62, 91–99 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Boiti, F. Pempinelli, A. Pogrebkov, and B. Prinari, Inverse Problems, 17, 937–957 (2001); arXiv:nlin/0101030v1 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. G. Biondini and Y. Kodama, J. Phys. A, 36, 10519–10536 (2003); arXiv:nlin/0306003v1 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. G. Biondini and S. Chakravarty, J. Math. Phys., 47, 033514 (2006); arXiv:nlin/0511068v1 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  21. G. Biondini and S. Chakravarty, Math. Comput. Simulation, 74, 237–250 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Biondini, Phys. Rev. Lett., 99, 064103 (2007).

    Article  ADS  Google Scholar 

  23. S. Chakravarty and Y. Kodama, J. Phys. A, 41, 275209 (2008); arXiv:0710.1456v1 [nlin.SI] (2007).

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Sato, “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds,” in: Random Systems and Dynamical Systems (RIMS Kokyuroku, Vol. 439, H. Totoki, ed.), Kyoto Univ., Kyoto (1981), p. 30–46.

    Google Scholar 

  25. S. Chakravarty and Y. Kodama, Stud. Appl. Math., 123, 83–151 (2009); arXiv:0902.4433v2 [nlin.SI] (2009).

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Biondini, K.-I. Maruno, M. Oikawa, and H. Tsuji, Stud. Appl. Math., 122, 377–394 (2009); arXiv:0903. 5279v3 [nlin.SI] (2009).

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, Theor. Math. Phys., 159, 721–733 (2009); arXiv:0901.3857v1 [nlin.SI] (2009).

    Article  MATH  Google Scholar 

  28. M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, J. Math. Phys., 43, 1044–1062 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. J. Villarroel and M. J. Ablowitz, Stud. Appl. Math., 109, 151–162 (2002); Nonlinearity, 17, 1843–1866 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Boiti, F. Pempinelli, and A. K. Pogrebkov, J. Math. Phys., 47, 123510 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Miwa, M. Jimbo, and E. Date, Solitons: Differential Equations, Symmetries, and Infinite Dimensional Algebras (Cambridge Tracts Math., Vol. 135), Cambridge Univ. Press, Cambridge (2000).

    MATH  Google Scholar 

  32. M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, “On the equivalence of different approaches for generating multisoliton solutions of the KPII equation,” arXiv:0911.1675v1 [nlin.SI] (2009).

  33. S. Chakravarty, T. Lewkowa, and K.-I. Maruno, “On the construction of the KP line-solitons and their interactions,” arXiv:0911.2290v1 [nlin.SI] (2009).

  34. P. G. Grinevich and A. Yu. Orlov, “Virasoro action on Riemann surfaces, grassmannians, det \( \bar \partial _j \), and Segal-Wilson τ-function,” in: Problems of Modern Quantum Field Theory (A. A. Belavin, A. U. Klimyk, and A. B. Zamolodchikov, eds.), Springer, Berlin (1989), pp. 86–106.

    Google Scholar 

  35. F. R. Gantmakher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems [in Russian], GTTI, Moscow (1950); English transl. (rev. ed.), AMS Chelsea, Providence, R. I. (2002).

    Google Scholar 

  36. F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1988); English transl., Amer. Math. Soc., Providence, R. I. (1998).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pogrebkov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 165, No. 1, pp. 3–24, October, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boiti, M., Pempinelli, F., Pogrebkov, A.K. et al. The equivalence of different approaches for generating multisoliton solutions of the KPII equation. Theor Math Phys 165, 1237–1255 (2010). https://doi.org/10.1007/s11232-010-0106-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0106-3

Keywords

Navigation