Skip to main content
Log in

A τ-function solution of the sixth painlevé transcendent

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We represent and analyze the general solution of the sixth Painlevé transcendent \( \mathcal{P}_6 \) in the Picard-Hitchin-Okamoto class in the Painlevé form as the logarithmic derivative of the ratio of τ-functions. We express these functions explicitly in terms of the elliptic Legendre integrals and Jacobi theta functions, for which we write the general differentiation rules. We also establish a relation between the \( \mathcal{P}_6 \) equation and the uniformization of algebraic curves and present examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Fuchs, C. R. Acad. Sci. Paris, 141, 555–558 (1906).

    MATH  Google Scholar 

  2. M. V. Babich and D. A. Korotkin, Lett. Math. Phys., 46, 323–337 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  3. K. P. Tod, Phys. Lett. A, 190, 221–224 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. N. Hitchin, J. Differential Geom., 42, 30–112 (1995).

    MATH  MathSciNet  Google Scholar 

  5. P. Painlevé, C. R. Acad. Sci., 143, 1111–1117 (1907).

    MATH  Google Scholar 

  6. N. I. Akhiezer, Elements of the Theory of Elliptic Functions [in Russian], Nauka, Moscow (1970); English transl. (Transl. Math. Monogr., Vol. 79), Amer. Math. Soc., Providence, R. I. (1990).

    Google Scholar 

  7. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York (1955).

    Google Scholar 

  8. K. Weierstrass, Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen, Kaestner, Göttingen (1885).

    Google Scholar 

  9. M. V. Babich, Russ. Math. Surveys, 64, 45–127 (2009).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. W. K. Schief, Phys. Lett. A, 267, 265–275 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. F. Nijhoff, A. Hone, and N. Joshi, Phys. Lett. A, 267, 147–156 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Yu. V. Brezhnev, Moscow Math. J., 8, 233–271 (2008).

    MATH  MathSciNet  Google Scholar 

  13. D. Guzzetti, Comm. Pure Appl. Math., 55, 1280–1363 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Conte, ed., The Painlevé Property: One Century Later, Springer, New York (1999).

    MATH  Google Scholar 

  15. V. Gromak, I. Laine, and S. Shimomura, Painlevé Differential Equations in the Complex Plane (de Gruyter Stud. Math., Vol. 28), Walter de Gruyter, Berlin (2002).

    MATH  Google Scholar 

  16. K. Okamoto, Proc. Japan Acad. Ser. A, 56, 367–371 (1980).

    Article  MATH  Google Scholar 

  17. A. V. Kitaev and D. A. Korotkin, Internat. Math. Res. Notices, 17, 877–905 (1998).

    Article  MathSciNet  Google Scholar 

  18. K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida, From Gauss to Painlevé: A Modern Theory of Special Functions (Aspects Math., Vol. E16), Friedr. Vieweg, Braunschweig (1991).

    MATH  Google Scholar 

  19. E. Picard, J. de Math. (4), 5, 135–319 (1889).

    MathSciNet  Google Scholar 

  20. P. Painlevé, OEuvres de Paul Painlevé, Vol. 3, Equations differentielles du second ordre. Mécanique. Quelques documents, Éditions du CNRS, Paris (1975).

    Google Scholar 

  21. K. Okamoto, Ann. Mat. Pura Appl. (4), 146, 337–381 (1986).

    Article  Google Scholar 

  22. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions, with an Account of the Principal Transcendental Functions, Cambridge Univ. Press, Cambridge (1996).

    MATH  Google Scholar 

  23. M. Mazzocco, Math. Ann., 321, 157–195 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Fuchs, Math. Ann., 70, 525–549 (1911).

    Article  MATH  MathSciNet  Google Scholar 

  25. H. A. Schwarz, Gesammelte mathematische Abhandlundgen, Springer, Berlin (1890).

    Google Scholar 

  26. Yu. V. Brezhnev, “On functions of Jacobi-Weierstrass (I) and equation of Painleve,” arXiv:0808.3486v1 [math.CA] (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Brezhnev.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 161, No. 3, pp. 346–366, December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brezhnev, Y.V. A τ-function solution of the sixth painlevé transcendent. Theor Math Phys 161, 1616–1633 (2009). https://doi.org/10.1007/s11232-009-0150-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0150-z

Keywords

Navigation